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Motivation

• Goal: analyse temporal data with dependency on the past through the model of Hawkes processes.
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Earthquake occurrences

Image from Peng et al. (2012)
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Motivation

• Goal: analyse temporal data with dependency on the past through the model of Hawkes processes.

Synaptic signalling in neuronsEarthquake occurrences

Image from Peng et al. (2012)

t1 t2 t3 t4 … tn

Image from The Harvard Gazette
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Point process and conditional intensity function

• Let  be a point process in the real line  with event times .  
Let  be the history of  up to time . 

N ℝ (Tk)k∈ℤ
ℋt = σ(Tk, Tk ≤ t) N t ∈ ℝ

• The conditional intensity function  of process  is defined as:





• Intuitively, it quantifies the probability of observing an event at time .

λ : ℝ → ℝ≥0 N

λ(t ∣ ℋt) = lim
h→0

𝔼[N([t, t + h)) ∣ ℋt]
h

.

t

• For any Borel set ,  represents the number of points in .B ∈ ℬℝ N(B) = ∑k∈ℤ 1Tk∈B B
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Hawkes process

Intensity function of a self-exciting Hawkes processIntensity function of a self-exciting Hawkes process

• A linear Hawkes process  is a univariate point process defined by the conditional intensity function 
(Hawkes 1971):





• with baseline intensity  and kernel function  such that 

H

λ(t ∣ ℋt) = μ + ∫
t

−∞
h(t − s) N(ds) = μ + ∑

Tk≤t

h(t − Tk) ,

μ > 0 h : ℝ≥0 → ℝ≥0 ∫
ℝ

h(t) dt < 1.
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Hawkes process

Intensity function of a self-exciting Hawkes processIntensity function of a self-exciting Hawkes process

• A linear Hawkes process  is a univariate point process defined by the conditional intensity function 
(Hawkes 1971):





• with baseline intensity  and kernel function  such that 

H

λ(t ∣ ℋt) = μ + ∫
t

−∞
h(t − s) N(ds) = μ + ∑

Tk≤t

h(t − Tk) ,

μ > 0 h : ℝ≥0 → ℝ≥0 ∫
ℝ

h(t) dt < 1.
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Multivariate Hawkes process

• A multivariate Hawkes process  with dimension  is a collection of  univariate point 
processes with respective event times , 
 
 
 
 
 
with intensity functions:





• where  and . The ordered union of events  form the events of  noted 
.


• Let  and , then process  is a stationary point process if   
(Brémaud et al. 1996).

H = (H1, …, Hd) d d
(Ti

k)k

λi(t) = μi +
d

∑
j=1

∑
Tj

k≤t

hij(t − Tj
k) ,

μi > 0 hij : ℝ≥0 → ℝ≥0 (Ti
k)k H

(T(k))k∈ℤ

∥hij∥1 = ∫
ℝ

|hij(t) | dt S = (∥hij∥1)ij H ρ(S) < 1
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Bivariate Hawkes process

Intensity functions of a bivariate Hawkes process Interaction graph

•  encodes the influence of process  on process . 
In particular,  represents an absence of interaction.
hij Nj Ni

hij = 0

h11

h22

h21
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Statistical framework

• We define a parametric model of a Hawkes process (where  is parametrised by a vector ):





• Let  be an observation of a Hawkes process in a time window .


• Goal: propose an inference estimation method to account for two scenarios inspired by neuronal data.

h γ

𝒬 = {λθ : ℝ → ℝ≥0, θ = (μ, γ) ∈ Θ} .

(Tk)1≤k≤N([0,T]) [0, T]

First axis: factoring in inhibition for Hawkes 
processes.  

Second axis: spectral methods for imperfect 
data

Image from Park et al. (2013)
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First axis: 

Factoring in inhibition for Hawkes processes
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How to model inhibition ?

• Inhibition is the opposite effect of excitation  lowering the chances of further events occurring.


• Additive inhibition  allowing  to be a signed function (take negative values).


• Problem: the intensity functions  has to be non-negative!


• We work then with the non-linear Hawkes process (Brémaud et al. 1996) defined by the intensity 
functions:





• where  is an -lipschitz function (for ) such that , with  
(Sulem et al. 2024).

→

= hij

λi

λi(t) = Φ μi +
d

∑
j=1

∑
Tj

k≤t

hij(t − Tj
k) ,

Φ : ℝ → ℝ≥0 L 0 < L < ∞ ρ(S+) < 1 S+ = (L∥h+
ij ∥1)ij
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Literature review

• What is in the literature for estimating Hawkes models with additive inhibition? 

• Frequentist settings: 

• Only done through approximations in parametric frequentist settings as in Lemonnier et al. (2014) and 
Bacry et al. (2020), in non-parametric as in Reynaud-Bouret et al. (2014) and Bacry et al. (2016):





• Bayesian settings: 

• Parametric estimation as in Deutsch et al. (2024) with time-varying baselines and efficient prior choice.


• Non-parametric estimation as in Sulem et al. (2024) for finite-memory kernels.


• Missing works in frequentist parametric frameworks.

λi(t) ≈ μi +
d

∑
j=1

∑
Tj

k≤t

hij(t − Tj
k) .
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The multivariate non-linear Hawkes process

• Let  be the positive part function. For any integer , the intensity function  of 
process  reads:





• Advantage: if , for all integers , we retrieve the same intensity function of a linear Hawkes process. 

Φ( ⋅ ) = ( ⋅ )+ = max(0, ⋅) i λi

Hi

λi(t) = μi +
d

∑
j=1

∑
Tj

k≤t

hij(t − Tj
k)

+

.

hij ≥ 0 i, j

Intensity function of a bivariate exponential Hawkes process Example of interaction graph of a 

10 dimensional Hawkes process
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Estimation procedure

• Goal: implement the Maximum Likelihood Estimation (MLE) procedure. 

• We define the parametric model:





• For an observation of  in the time window , the log-likelihood of multivariate point 
process reads:





𝒬 = {λi
θ : ℝ → ℝ≥0, θ = (μ, γ) ∈ Θ} .

H = (H1, …, Hd) [0, T]

ℓT(θ) =
d

∑
i=1

ℓi
T(θ) =

d

∑
i=1 (

Ni([0, T])

∑
k=1

log λi
θ(T

i−
k ) − Λi

θ(T)) , with Λi
θ(T) = ∫

T

0
λi

θ(t) dt .

How can we compute exactly the log-likelihood when inhibition is present?
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Challenge

• Challenge: to compute the compensator , we need to integrate the function  in the intervals where the 
intensity is positive. As we can see, even in the intervals , the functions are not easy to study 
(not smooth even with smooth kernels).

Λi λi

[T(k), T(k+1))
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Challenge

• We introduce the concept of the underlying intensity function  such that . For any :





• Advantage: under certain conditions, the function  is piecewise smooth in the intervals .

λi⋆ λi = Φ ∘ λi⋆ t ∈ ℝ

λi⋆(t) = μi +
d

∑
j=1

∑
Tj

k≤t

hij(t − Tj
k) ,

λi⋆ [T(k), T(k+1))
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Challenge
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λi⋆(t) = μi +
d

∑
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Tj
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λi⋆ [T(k), T(k+1))
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The univariate self-inhibiting Hawkes process

• Let us begin by working in the univariate case . The underlying intensity function reads:
d = 1

λ⋆(t) = μ + ∑
Tk≤t

h(t − Tk) .

Conditional and underlying intensity functions of a univariate exponential Hawkes process
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The univariate self-inhibiting Hawkes process

• Let us begin by working in the univariate case . The underlying intensity function reads:





• We introduce the restart times :


d = 1

λ⋆(t) = μ + ∑
Tk≤t

h(t − Tk) .

(T⋆
k )k∈ℤ

T⋆
k = inf {t ≥ Tk : λ⋆(t) ≥ 0} .

Conditional and underlying intensity functions of a univariate exponential Hawkes process
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Compensator

Lemma 

If  is a monotonous function, then, for any integer , the function  is monotonous 
and  is the only solution to:


. 


Furthermore the compensator  of  can be expressed as:


h k ∈ ℤ λ⋆ : [Tk, Tk+1) → ℝ
T⋆

k

λ⋆(t) = 0, for t ∈ [Tk, Tk+1)

Λ H

Λ(t) =

μt if t < T1

μT1 +
N([0,t])−1

∑
k=1

∫
Tk+1

T⋆
k

λ⋆(u) du + ∫
t

T⋆
N([0,t])

λ⋆(u) du if t ≥ T1 .

• Closed-form expression of the compensator  closed-form expression of the log-likelihood. 

• We can implement the MLE method of estimation with the same complexity as in the purely self-exciting 
scenario.

→



22

Exponential kernel

• In the case of an exponential kernel function , for any , the same method as in Ozaki 
(1979) can be implemented:

h(t) = αe−βt t > 0

Proposition 

Let us assume that  is the exponential kernel function.


For any integer , the restart times  reads:





and, for any :


h

k T⋆
k

T⋆
k = Tk + β−1 log ( μ − λ⋆(Tk)

μ ) 1λ⋆(Tk)<0 ,

τ ∈ [T⋆
k , Tk+1]

∫
τ

T⋆
k

λ⋆(u) du = μ(τ − T⋆
k ) + β−1(λ⋆(Tk) − μ)(e−β(T⋆

k −Tk) − e−β(τ−Tk)) .
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Numerical results

Increasing inhibition
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The multivariate framework

• Even when the functions are exponential (or monotonous), the functions  are not monotonous between 
two consecutive event times .


• We can define the restart times 


• We adapt our methodology to the exponential kernel functions , for .

λi⋆

T(k), T(k+1)

Ti⋆
(k) = min(inf {t ≥ T(k) : λi⋆(t) ≥ 0}, T(k+1)) .

hij(t) = αije−βijt t ≥ 0
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The exponential kernel function

Lemma 

Let  be a multivariate Hawkes process defined by its conditional intensities  with exponential kernel 
functions. Let us assume that for each , there exists  for all .


Then  is piecewise monotonous and, for any :


 


Furthermore, if , then


                                  .

N λi

i βi = βij j

λi⋆ k > 1

Ti⋆
(k) = min T(k) + β−1

i log (
μi − λi⋆(T(k))

μi )1{λi⋆(T(k))<0}, T(k+1) .

Ti⋆
(k) < T(k+1)

λi(t) = λi⋆(t) > 0  for any t ∈ (Ti⋆
(k), T(k+1))

• We can then again implement the MLE procedure.


• New question: how can we estimate the null interactions?
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On estimating the support of interactions

• Challenge: unlike the univariate scenario, some interactions may be inexistent ( ), which a classical 
MLE estimation may not capture.


• Solution: Do a three-step estimation:

αij = 0

1. Estimation of matrix  through 
MLE

α 2. Support estimation by 
thresholding or confidence interval 

3. Re-estimation through MLE in 
reduced model

Sign of estimations Sign of estimations
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On estimating the support of interactions

2. Support estimation by 
thresholding or confidence interval 

• MLE- : consider the ordered absolute values of the estimated entries 
of matrix , noted . 

Compute the cumulative sums  and let .  

Set , for all  such that .  

ε
α (α̃(l))l

sk =
k

∑
l=1

α̃(l) S = sd2

α̃(k) = 0 k sk < εS



28

On estimating the support of interactions

2. Support estimation by 
thresholding or confidence interval 

• MLE- : consider the ordered absolute values of the estimated entries 
of matrix , noted . 

Compute the cumulative sums  and let .  

Set , for all  such that .  

• Confidence interval: construct a confidence interval  for each 
parameter  through a set of estimations . 
Set  if and only if .

ε
α (α̃(l))l

sk =
k

∑
l=1

α̃(l) S = sd2

α̃(k) = 0 k sk < εS

Iij
αij (α̃k

ij)k
α̃ij = 0 0 ∈ Iij Confidence intervals for a 5 dimensional Hawkes process. 


In red the intervals containing the value 0
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Goodness-of-fit test

• Challenge: how can we compare different estimations in order to choose the best model in a real data 
scenario without access to the true parameters?


• Solution: Implement a hypothesis testing procedure through the time change theorem.


• For any parameter , we define the null hypothesis:


• For every integer ,  :  is an i.i.d sample from a unit rate exponential 
distribution.


• Additionally  :  is an i.i.d sample from a unit rate exponential 

distribution.


•  tests the goodness-of-fit between  and the observations of process   -value: .


•  tests the goodness-of-fit between  and the process  seen as a whole  -value: .

θ0

i ℋi (Λi
θ0 (Ti

k+1) − Λi
θ0 (Ti

k))k

ℋtot (Λθ0 (T(k+1)) − Λθ0 (T(k)))
k

ℋi θ0 Ni → p pi

ℋtot θ0 N → p ptot
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Ordered -values for all hypothesis tests  and . 

 appears as a cross for each model.

p ℋi ℋtot
ptot

Numerical results: neuronal data

• Our data consists of 10 realisations of neuronal activations from a red-eared turtle.  
223 neurons in total  add a multiple testing procedure.→
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Numerical results: neuronal data

Support estimation (Empirical confidence interval)
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Motivation

Image from Park et al. (2013)

Synaptic signalling in neuronsEarthquake occurrences

Image from Peng et al. (2012)

• How is temporal data collected and converted to a point process realisation?

t1 t2 t3 t4 … tn
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Second axis: 

Spectral methods for imperfect data
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Errors and literature overview

• Data may contain measurement errors which may introduce bias to any standard inference procedure.

What is there in the literature for imperfect observations of point processes?
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Errors and literature overview

• Data may contain measurement errors which may introduce bias to any standard inference procedure.

What is there in the literature for imperfect observations of point processes? 

• The most common case is jittering or random displacement of points as in Antoniadis et al. (2006), 
Trouleau et al. (2019) and Bonnet et al. (2022). 

: Hawkes process H (μ, h)
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Errors and literature overview

• Data may contain measurement errors which may introduce bias to any standard inference procedure.

What is there in the literature for imperfect observations of point processes? 

• The most common case is jittering or random displacement of points as in Antoniadis et al. (2006), 
Trouleau et al. (2019) and Bonnet et al. (2022). 

• In Cheysson et al. (2022), binned observations of  are studied through spectral theory.H

: Hawkes process H (μ, h)
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Noise by superposition

First scenario: additional external points (superposition)

Superposition

: Hawkes process H (μ, h) : Poisson process P λ0

: Noisy Hawkes process N (μ, h, λ0)
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Errors and literature overview

• Data may contain measurement errors which may introduce bias to any standard inference procedure.

What is there in the literature for imperfect observations of point processes? 

• The most common case is jittering or random displacement of points as in Antoniadis et al. (2006), 
Trouleau et al. (2019)  and Bonnet et al. (2022). 

• In Cheysson et al. (2022), binned observations of  are studied through spectral theory. 

• Lund et al. (2000) focuses on processes noised by superposition, thinning and jittering by studying the 
conditional log-likelihood of  given .  
Staerman et al. (2024) for marked Hawkes processes by latent factor estimation through an EM algorithm.  

H

N H
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Noise by thinning

Second scenario: missing points (thinning)

: Hawkes process H (μ, h)

: Thinned Hawkes process N (μ, h, p)

p-thinning
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Errors and literature overview

• Data may contain measurement errors which may introduce bias to any standard inference procedure.

What is there in the literature for imperfect observations of point processes? 

• The most common case is jittering or random displacement of points as in Antoniadis et al. (2006), 
Trouleau et al. (2019)  and Bonnet et al. (2022). 

• In Cheysson et al. (2022), binned observations of  are studied through spectral theory. 

• Lund et al. (2000) focuses on processes noised by superposition, thinning and jittering by studying the 
conditional log-likelihood of  given .  
Staerman et al. (2024) for marked Hawkes processes by latent factor estimation through an EM algorithm.  

• The case of missing points, obtained by thinning, is studied in Mei et al. (2019) and Deutsch et al. (2020). 

H

N H
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Challenge

• Let  be a univariate (or multivariate) self-exciting 
Hawkes process.


• Let  be the resulting point process obtained from 
 by either superposition or by thinning.


• Goal: provide a parametric inference procedure of 
the parameters of  and of the noise.


• Challenge: we do not have access to the 
distribution of .

H

N
H

H

N

Intensity function of a univariate Hawkes process superposed

to a homogeneous Poisson process 
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Spectral theory of point processes

• Spectral analysis from time series theory, introduced for point processes in Bartlett (1963).


• Growing interest, in particular in spatial contexts (Rajala et al. 2023) with advancements in asymptotic 
results in  (Yang et al. 2024).


• Application to locally stationary Hawkes processes (Roueff et al. 2015). 

• Based on the the spectral density  and the periodogram .


• The spectral density  characterises the second-order moment of a point process instead of focusing on 
its distribution.


• For an observation  of , its periodogram reads, for any :





• This quantity can be computed even in the presence of measurement errors. 

ℝd

f IT

f

(Tk)1≤k≤N([0, T]) N ω ∈ ℝ

IT(ω) =
1
T

N(T)

∑
k=1

N(T)

∑
l=1

e−2πiω(TN
k −TN

l ) .
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The spectral log-likelihood

• The periodogram and the spectral density are asymptotically linked: 

 


And for any  such that  for all , the r.v.  are asymptotically independent. 

• The spectral log-likelihood (Whittle 1952) an be defined as: 




• We obtain an estimation of the parameters by maximising . 


• Challenge: obtain an expression of the spectral density  for our noised processes .

IT(ω) d

T→+∞
Exp ( 1

f(ω) ) .

(ωk)1≤k≤M ωi ≠ ωj i ≠ j (IT(ωk))k

ℓT = −
1
T

M

∑
k=1 (log (f(ωk)) +

IT(ωk)
f(ωk) ) , for ωk = k/T .

ℓT

f N
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The spectral density of noised processes

Proposition 

Let  be two independent stationary point processes with respective spectral densities  and 
.


1. The superposition  admits a spectral density such as:





2. The -thinning  of  admits a spectral density such as:


X, Y fX, fY

p ∈ (0, 1)

X + Y

fX+Y = fX + fY .

p Xp X

fXp = p2 fX + p(1 − p) 𝔼[λH(0)] .
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The superposition noise

Superposition noise 

• Let, for any ,  for  and 


• The spectral density of a Hawkes process is known (Hawkes, 1971) and so the spectral density of the 
superposition  is given by:





• We define the parametric model:


t ∈ ℝ h(t) = αβe−βt 0 < α < 1 β > 0.

N = H + P

fN(ω) =
μ

1 − α (1 +
βα(2 − α)

(β(1 − α))2 + 4π2ω2 ) + λ0 .

𝒬 = {fN
θ : ℝ → ℂ, θ = (μ, α, β, λ0) ∈ Θ}

Proposition 

The model  is identifiable if and only if one of the parameters in the 4-uplet  is fixed.𝒬 θ = (μ, α, β, λ0)
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Convergence of the estimator

 relative error with respect to observation horizon ℓ2 T
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The bivariate case

• Let  be a bivariate exponential Hawkes process ( ) and  a homogeneous bivariate Poisson 
process with constant rate .


• We define the parametric model: 


H hij = αijβie−βit P
λ0

𝒬Λ = {fN
θ : ℝ → ℂ, θ = (μ, α, β, λ0) ∈ ℝ2

>0 × Λ × ℝ2
>0 × ℝ>0}

Proposition 

The model  is identifiable if:


1. .


2. .

𝒬Λ

Λ = {(α11 0
α21 0), 0 ≤ α11 < 1,α21 > 0}

Λ = {(α11 0
α21 α22), 0 < α11 < 1,α21 > 0,0 ≤ α22 < 1}

Scenario 1 of identifiability

Scenario 2 of identifiability
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Model

Bivariate scenario:  (α11 0
α21 0)

Boxplot of estimations for each parameter
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The thinning noise

Thinning noise 

• Let, for any ,  for  and 


• The spectral density of a -thinned Hawkes process is given by:





• We define the parametric model:


t ∈ ℝ h(t) = αβe−βt 0 < α < 1 β > 0.

p

fN(ω) =
μp

1 − α (1 + p
βα(2 − α)

(β(1 − α))2 + 4π2ω2 ) .

𝒬 = {fN
θ : ℝ → ℂ, θ = (μ, α, β, p) ∈ Θ}

Proposition 

The model  is identifiable if and only if one of the parameters in the 4-uplet  is fixed.𝒬 θ = (μ, α, β, p)
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The -thinning of a Hawkes processp

• Advantage: thinning a point process can be used as a subsampling (Biscio, 2019).


• Subsampling can improve estimations when only a few realisations are available, which can be common in 
real data contexts. 

• Let us compare the performance of spectral estimators with 1 observation of  in a small window  in 
4 scenarios:


1. : obtained by maximising the non-penalised spectral log-likelihood.


2. : obtained by maximising the -penalised spectral log-likelihood.


3. : the average estimation by partitioning the window .


4. : the average estimation obtained by -thinning  times process .

H [0, T]

̂θ

̂θL L2

̂θL
partition [0, T]

̂θL
thinning p l H
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Numerical results

• We carry out the estimations in 1000 different estimations.


• The subsampling by thinning scheme provides the best MSRE overall and the best estimator in 70% of the 
cases.

Mean squared relative error (MSRE) of  along with the MSRE of .

Last column shows the proportion of times that each estimator achieves the lowest relative  error.

(μ, α, β) θ
ℓ2
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Conclusion

• Our contributions concern the study of two extensions of the classical Hawkes process model in 
parametric frequentist settings:


A. The study of additive inhibition: 

• Implemented the MLE for multivariate Hawkes processes.


• Proposed three methods to infer the null interactions.


• Illustrated in neuronal activity data with a multiple testing procedure to compare models and validate 
our estimations


 
Chapter 3: Bonnet, A., Martinez Herrera, M., Sangnier, M., “Maximum Likelihood Estimation for Hawkes 
Processes with self-excitation or inhibition.” (2021) in Statistics and Probability Letters.


Chapter 4: Bonnet, A., Martinez Herrera, M., Sangnier, M., “Inference of multivariate exponential Hawkes 
processes with inhibition and application to neuronal activity.” (2023) in Statistics and Computing.
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Conclusion

• Our contributions concern the study of two extensions of the classical Hawkes process model in 
parametric frequentist settings:


B. Accounting for measurement errors in the form of additional or missing points: 

• Studied the spectral density of two models of noised Hawkes processes.


• Proposed different conditions to retrieve identifiability for the statistical models.


• Applied the results concerning the thinning of a point process to improve numerical estimations.


 
Chapter 5: Bonnet, A., Cheysson, F., Martinez Herrera, M., Sangnier, M., “Spectral analysis for the inference 
of noisy Hawkes processes.” (2024) In revision.


Chapter 6: Cheysson F., Martinez Herrera, M., “A numerical exploration of thinned Hawkes processes 
through spectral theory.” Ongoing work.
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Perspectives

• Extend the MLE procedure with inhibition to other kernel functions and non-linear functions  model 
more accurately a wider spectrum of phenomena. 

• Add Ridge and Lasso penalisation methods with efficient optimisation procedure and parameter 
selection paradigms  improve estimations in particular to better estimate the interaction matrix. 

• Extend the study of noised Hawkes processes to include inhibition  open up the applications to real 
world data (like neuronal activity). 

• Establish asymptotic results for our estimators  gain access to asymptotic confidence intervals. 

→

→

→

→



Thank you very much



Appendix
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Motivation

• There are three possible scenarios for the restart times:
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Numerical results: simulated data

• Simulations in dimension  compared to:


• Approximated log-likelihood maximisation procedure 
(Lemonnier et al. 2014).


• Least-squares minimisation procedure (Bacry et al. 
2020).

d = 10



Appendix | Algorithm of log-likelihood computation (multivariate)
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Appendix | Restart times
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Identifiability for multivariate Hawkes processes

Theorem 

Let  be a realisation of a multivariate Hawkes process  and  be the corresponding 
filtration.


Let us assume that a.s. for every , , there exist an event time  from process , 
and an event time  from process , such that:


• .


• There are only events of process  in the interval .


Then for any ,


(T(k))k>0 H ℋt

(i, j) ∈ {1,…, d}2 i ≠ j τ Nj

τ+ > τ Ni

λi
θi
(τ−) > 0

Nj [τ . τ+)

θ′ ∈ Θ

∀i ∈ {1,…, d}, λi
θi
(t ∣ ℋt) = λi

θ′ i
(t ∣ ℋt) a.e. ⟺ θ = θ′ .
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1. Estimation of matrix  through 
MLE

α 2. Support estimation by 
thresholding or empirical 

confidence interval 

3. Re-estimation through MLE in 
reduced model

Appendix | Empirical confidence estimation
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Appendix | Benjamini-Hochberg 

• The Benjamini-Hochberg procedure for multiple testing  control the False Discovery Rate (FDR)





• where  is the number of false discoveries and  is the number of true discoveries.


• For a given confidence level  and a collection of ordered -values , find the largest  such 
that:





• Reject all null hypothesis  such that .

→

FDR = 𝔼 [ V
S + V ] ,

V S

1 − α p (p(k))1≤k≤m k

p(k) ≤
k
m

α .

ℋ(i) i ≤ k



64

f(ω) = mH
1

1
|1 − αh̃(ω)|2

Spectral density of a Hawkes process with function :h

Spectral density of a multivariate Hawkes process:

f(ω) = (Id − h̃(ω))
−1

diag(mH)(Id − h̃(−ω)T)
−1

Appendix / Spectral densities of the Hawkes process
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Appendix / Bivariate non-identifiable

• Let  be a bivariate exponential Hawkes process ( ),  a homogeneous bivariate Poisson 
process with constant rate .


• We define the parametric model: 


H hij = αijβie−βit P
λ0

𝒬Λ = {fN
θ : ℝ → ℂ, θ = (μ, α, β, λ0) ∈ ℝ2

>0 × Λ × ℝ2
>0 × ℝ>0}

Proposition 

The model  is not identifiable if:


1. 


2.

𝒬Λ

Λ = {(α11 0
0 α22), 0 ≤ α11, α22 < 1}

Λ = {(α11 α12

0 0 ), 0 < α11 < 1,α12 > 0}
Scenario 1 of non-identifiability

Scenario 2 of non-identifiability



66

Appendix / Estimation w.r.t. p
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Appendix / Distribution of estimations with subsampling
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Appendix / Non-parametric estimation of the spectral density of H


