Inference of non-linear or imperfectly observed Hawkes processes

Miguel Martinez Herrera

12 November 2024

Supervised by Anna Bonnet, Arnaud Guyader and Maxime Sangnier

PhD Defence

• **Goal:** analyse temporal data with dependency on the past through the model of **Hawkes processes.**

Motivation

• **Goal:** analyse temporal data with dependency on the past through the model of **Hawkes processes.**

Early aftershocks of the 2011 Mw9.0 Tohoku-Oki, Japan earthquake

Earthquake occurrences

Image from Peng et al. (2012)

Motivation

• **Goal:** analyse temporal data with dependency on the past through the model of **Hawkes processes.**

Earthquake occurrences **Earthquake occurrences** Synaptic signalling in neurons

Early aftershocks of the 2011 Mw9.0 Tohoku-Oki, Japan earthquake

Image from Peng et al. (2012)

Image from The Harvard Gazette

Point process and conditional intensity function

• Let N be a point process in the real line \R with event times $(T_k)_{k\in\Z}$. Let $\mathscr{H}_t = \sigma(T_k, T_k \leq t)$ be the history of N up to time $t \in \mathbb{R}$.

- For any Borel set $B \in \mathscr{B}_{\mathbb{R}}$, $N(B) = \sum_{k \in \mathbb{Z}} \mathbf{1}_{T_k \in B}$ represents the number of points in B .
- The conditional intensity function $\lambda\colon \mathbb{R}\to \mathbb{R}_{\geq 0}$ of process N is defined as:

$$
\lambda(t \mid \mathcal{H}_t) = \lim_{h \to 0} \frac{\mathbb{E}[N([t, t+h)) \mid \mathcal{H}_t]}{h}
$$

Intuitively, it quantifies the probability of observing an event at time t .

.

Hawkes process

Intensity function of a self-exciting Hawkes process

• A linear Hawkes process H is a univariate point process defined by the conditional intensity function (Hawkes 1971):

> ℝ $h(t)$ d*t* < 1.

$$
\lambda(t \mid \mathcal{H}_t) = \mu + \int_{-\infty}^t h(t - s) N(ds) = \mu + \sum_{T_k \le t} h(t - T_k),
$$

with baseline intensity $\mu>0$ and kernel function $h\colon\mathbb{R}_{\geq 0}\to\mathbb{R}_{\geq 0}$ such that $\,\int$

Hawkes process

Intensity function of a self-exciting Hawkes process

• A linear Hawkes process H is a univariate point process defined by the conditional intensity function (Hawkes 1971):

> ℝ $h(t)$ d*t* < 1.

$$
\lambda(t \mid \mathcal{H}_t) = \mu + \int_{-\infty}^t h(t - s) N(ds) = \mu + \sum_{T_k \le t} h(t - T_k),
$$

with baseline intensity $\mu>0$ and kernel function $h\colon\mathbb{R}_{\geq 0}\to\mathbb{R}_{\geq 0}$ such that $\,\int$

Multivariate Hawkes process

• A multivariate Hawkes process $H = (H_1, ..., H_d)$ with dimension d is a collection of d univariate point processes with respective event times $(T^i_k)_k$,

• Let $||h_{ij}||_1 = ∫_ℝ$ $|h_{ij}(t)|$ d*t* and $S = (||h_{ij}||_1)_{ij}$, then process *H* is a **stationary** point process if $\rho(S) < 1$ (Brémaud et al. 1996).

with intensity functions:

 $\lambda^{i}(t) = \mu_{i} +$

where $\mu^i>0$ and $h_{ij}\colon\mathbb{R}_{\geq 0}\to\mathbb{R}_{\geq 0}.$ The ordered union of events $(T^i_k)_k$ form the events of H noted $(T_{(k)})_{k\in\mathbb{Z}}$.

$$
\sum_{j=1}^d \sum_{T_k^j \leq t} h_{ij}(t - T_k^j),
$$

Bivariate Hawkes process

• h_{ij} encodes the influence of process N_j on process N_i . In particular, $h_{ij} = 0$ represents an absence of interaction.

Intensity functions of a bivariate Hawkes process **Interaction** graph

Statistical framework

- We define a **parametric model** of a Hawkes process (where h is parametrised by a vector $γ$):
	- $\mathcal{Q} = \{\lambda_{\theta} \colon \mathbb{R} \to \mathbb{R}\}$
- Let $(T_k)_{1\leq k\leq N([0,T])}$ be an observation of a Hawkes process in a time window $[0,T]$.
-

• Goal: propose an inference estimation method to account for two scenarios inspired by neuronal data.

First axis: factoring in inhibition for Hawkes processes.

Second axis: spectral methods for imperfect data

$$
\mathbf{R}_{\geq 0}, \quad \theta = (\mu, \gamma) \in \Theta \big\}
$$

First axis:

Factoring in inhibition for Hawkes processes

How to model inhibition ?

- Inhibition is the opposite effect of excitation \rightarrow lowering the chances of further events occurring.
- Additive inhibition $=$ allowing h_{ij} to be a signed function (take negative values).
- **Problem:** the intensity functions λ^i has to be non-negative!

where $\Phi\colon\mathbb R\to\mathbb R_{\geq 0}$ is an L -lipschitz function (for $0< L<\infty$) such that $\rho(S^+)< 1$, with $S^+= (L\|h^+_{ij}\|_1)_{ij}$ (Sulem et al. 2024).

• We work then with the **non-linear Hawkes process** (Brémaud et al. 1996) defined by the intensity functions:

$$
\lambda^{i}(t) = \Phi\left(\mu_{i} + \sum_{j=1}^{d} \sum_{T_{k}^{j} \leq t} h_{ij}(t - T_{k}^{j})\right),
$$

• What is in the literature for estimating Hawkes models with additive inhibition?

• Frequentist settings:

 $\lambda^{i}(t) \approx \mu_{i} +$

• Only done through **approximations** in parametric frequentist settings as in Lemonnier et al. (2014) and Bacry et al. (2020), in non-parametric as in Reynaud-Bouret et al. (2014) and Bacry et al. (2016):

• Bayesian settings:

• Parametric estimation as in Deutsch et al. (2024) with time-varying baselines and efficient prior choice.

-
- Non-parametric estimation as in Sulem et al. (2024) for finite-memory kernels.

• Missing works in **frequentist parametric** frameworks.

$$
\sum_{j=1}^d \sum_{T_k^j \leq t} h_{ij}(t - T_k^j).
$$

The multivariate non-linear Hawkes process

• Let $\Phi(\cdot) = (\cdot)^+ = \max(0, \cdot)$ be the positive part function. For any integer *i*, the intensity function λ^i of process H^i reads:

$$
\lambda^{i}(t) = \left(\mu_{i} + \sum_{j=1}^{d} \sum_{T_{k}^{j} \leq t} h_{ij}(t - T_{k}^{j})\right)^{+}
$$

• Advantage: if $h_{ij} \geq 0$, for all integers i, j , we retrieve the same intensity function of a linear Hawkes process.

.

10 dimensional Hawkes process

Estimation procedure

- **• Goal:** implement the Maximum Likelihood Estimation (MLE) procedure.
- **•** We define the parametric model:

• For an observation of $H = (H_1, ..., H_d)$ in the time window $[0, T]$, the log-likelihood of multivariate point process reads:

$$
\mathcal{Q} = \left\{ \lambda_{\theta}^{i} \colon \mathbb{R} \to \mathbb{R}_{\geq 0}, \quad \theta = (\mu, \gamma) \in \Theta \right\}.
$$

$$
\mathcal{E}_T(\theta) = \sum_{i=1}^d \mathcal{E}_T^i(\theta) = \sum_{i=1}^d \left(\sum_{k=1}^{N^i([0,T])} \log \lambda_\theta^i(T_k^{i-}) - \Lambda_\theta^i(T) \right), \quad \text{with } \Lambda_\theta^i(T) = \int_0^T \lambda_\theta^i(t) dt.
$$

How can we compute exactly the log-likelihood when inhibition is present?

Challenge

(not smooth even with smooth kernels).

• Challenge: to compute the compensator Λ^i , we need to integrate the function λ^i in the intervals where the intensity is positive. As we can see, even in the intervals $[T_{(k)},T_{(k+1)})$, the functions are not easy to study

 t

$$
\lambda^{i\star}(t) = \mu_i +
$$

• We introduce the concept of the **underlying intensity function** λ^{i*} such that $\lambda^i = \Phi \circ \lambda^{i*}$. For any $t \in \mathbb{R}$:

$$
\sum_{j=1}^d \sum_{T_k^j \leq t} h_{ij}(t - T_k^j),
$$

• Advantage: under certain conditions, the function $\lambda^{i\star}$ is piecewise smooth in the intervals $[T_{(k)},T_{(k+1)}).$

$$
\lambda^{i\star}(t) = \mu_i +
$$

• We introduce the concept of the **underlying intensity function** λ^{i*} such that $\lambda^i = \Phi \circ \lambda^{i*}$. For any $t \in \mathbb{R}$:

$$
\sum_{j=1}^d \sum_{T_k^j \leq t} h_{ij}(t - T_k^j),
$$

• Advantage: under certain conditions, the function $\lambda^{i\star}$ is piecewise smooth in the intervals $[T_{(k)},T_{(k+1)}).$

The univariate self-inhibiting Hawkes process

• Let us begin by working in the univariate case $d=1$. The underlying intensity function reads:

 $\lambda^*(t) = \mu + \sum$

$T_k \leq t$ $h(t-T_k)$.

The univariate self-inhibiting Hawkes process

• Let us begin by working in the univariate case $d = 1$. The underlying intensity function reads:

 $\lambda^*(t) = \mu$

• We introduce the **restart times** $(T_k^{\star})_{k \in \mathbb{Z}}$:

$$
+\sum_{T_k\leq t}h(t-T_k).
$$

Compensator

Lemma

If h is a monotonous function, then, for any integer $k\in\Z$, the function $\lambda^\star\colon [T_k,T_{k+1})\to\R$ is monotonous and T_{k}^{\star} is the only solution to: h is a monotonous function, then, for any integer $k\in\mathbb{Z}$, the function $\lambda^\star\colon [T_k,T_{k+1})\to\mathbb{R}$ *k*

 $\lambda^*(t) = 0$.

Furthermore the compensator Λ of H can be expressed as:

, for
$$
t \in [T_k, T_{k+1})
$$
.

$$
\Lambda(t) = \begin{cases} \mu t & \text{if } t < T_1 \\ \mu T_1 + \sum_{k=1}^{N([0,t])-1} \int_{T_k^\star}^{T_{k+1}} \lambda^\star(u) \, \mathrm{d}u + \int_{T_{N([0,t])}^\star}^t \lambda^\star(u) \, \mathrm{d}u & \text{if } t \geq T_1. \end{cases}
$$

- Closed-form expression of the compensator **closed-form expression of the log-likelihood.** →
- scenario.

• We can implement the MLE method of estimation with the **same complexity** as in the purely self-exciting

Exponential kernel

• In the case of an *exponential kernel function* $h(i)$ (1979) can be implemented:

For any integer k , the restart times T_k^{\star} reads: *k*

$$
h(t) = \alpha e^{-\beta t}
$$
, for any $t > 0$, the same method as in Ozaki

Proposition

Let us assume that h is the exponential kernel function.

$$
T_k^{\star} = T_k + \beta^{-1} \log \left(\frac{\mu - \lambda^{\star}(T_k)}{\mu} \right) \mathbf{1}_{\lambda^{\star}(T_k) < 0},
$$

and, for any $\tau \in [T_k^{\star}, T_{k+1}]$:

$$
\int_{T_k^\star}^\tau \lambda^\star(u) \, \mathrm{d}u = \mu(\tau - T_k^\star) + \beta^{-1} (\lambda^\star(T_k) - \mu)(e^{-\beta(T_k^\star - T_k)} - e^{-\beta(\tau - T_k)}).
$$

Contract Contract Contract

Numerical results

Increasing inhibition

The multivariate framework

- Even when the functions are exponential (or monotonous), the functions $\lambda^{i\star}$ are not monotonous between two consecutive event times $T_{(k)}, T_{(k+1)}.$
- We can define the restart times $T^{i\star}_{(k)} = \min(\inf\left\{t \geq T_{(k)} \colon \lambda^{i\star}(t) \geq 0\right\}, T_{(k+1)}$
-

$$
t \geq T_{(k)} \colon \lambda^{i\star}(t) \geq 0 \}, T_{(k+1)}).
$$

• We adapt our methodology to the exponential kernel functions $h_{ij}(t) = \alpha_{ij} \mathrm{e}^{-\beta_{ij} t}$, for $t \geq 0$.

The exponential kernel function

Lemma

functions. Let us assume that for each i , there exists $\beta_i = \beta_{ij}$ for all j .

Then $\lambda^{i\star}$ is piecewise monotonous and, for any $k>1$:

- We can then again implement the MLE procedure.
- **• New question:** how can we estimate the **null interactions**?

Let N be a multivariate Hawkes process defined by its conditional intensities λ^i with exponential kernel

$$
p>1:
$$

$$
T_{(k)}^{i\star} = \min\left(T_{(k)} + \beta_i^{-1} \log\left(\frac{\mu^i - \lambda^{i\star}(T_{(k)})}{\mu^i}\right) \mathbf{1}_{\{\lambda^{i\star}(T_{(k)}) < 0\}}, \ T_{(k+1)}\right).
$$

Furthermore, if $T_{(k)}^{i\star} < T_{(k+1)}$, then

 $\lambda^{i}(t) = \lambda^{i \star}(t) > 0$ for any $t \in (T_{(k)}^{i \star}, T_{(k+1)}).$

$$
\in (T_{(k)}^{i\star}, T_{(k+1)}).
$$

On estimating the support of interactions

- Challenge: unlike the univariate scenario, some interactions may be inexistent ($\alpha_{ij} = 0$), which a classical MLE estimation may not capture.
- **• Solution:** Do a three-step estimation:

Sign of estimations Sign of estimations

On estimating the support of interactions

2. Support estimation by thresholding or confidence interval

• **MLE-** ε : consider the ordered absolute values of the estimated entries of matrix α , noted $(\tilde{\alpha}_{(l)})_{l^{\centerdot}}$

Compute the cumulative sums $s_k = \sum \tilde{\alpha}_{(l)}$ and let $S = s_{d^2}$. ∑

k

l=1

Set $\tilde{\alpha}_{(k)} = 0$, for all k such that $s_k < \varepsilon S$.

 $\tilde{\alpha}_{(l)}$ and let $S = s_{d^2}$

On estimating the support of interactions

2. Support estimation by thresholding or confidence interval

• **MLE-** ε : consider the ordered absolute values of the estimated entries of matrix α , noted $(\tilde{\alpha}_{(l)})_{l^{\centerdot}}$

Compute the cumulative sums $s_k = \sum \tilde{\alpha}_{(l)}$ and let $S = s_{d^2}$. *k* ∑ $l=1$

Set $\tilde{\alpha}_{(k)} = 0$, for all k such that $s_k < \varepsilon S$.

• Confidence interval: construct a confidence interval I_{ij} for each parameter α_{ij} through a set of estimations $(\tilde{\alpha}_{ij}^k)_{k}$. Set $\tilde{\alpha}_{ij} = 0$ if and only if $0 \in I_{ij}$. *ij*)*k* $i\dot{j}$ = 0 \dot{a} carry \dot{a} \dot{b} = \dot{c} I

 $\tilde{\alpha}_{(l)}$ and let $S = s_{d^2}$

In red the intervals containing the value 0

Goodness-of-fit test

• Challenge: how can we compare different estimations in order to choose the best model in a real data

• For every integer i , \mathscr{H}_i : $\left(\Lambda^i_{\theta_0}\left(T^i_{k+1}\right)-\Lambda^i_{\theta_0}\left(T^i_k\right)\right)_k$ is an i.i.d sample from a unit rate exponential $\binom{u}{k}$ _k

 $\Big(\theta_{\alpha})\Big)\bigg)$ is an i.i.d sample from a unit rate exponential

- scenario without access to the true parameters?
- **• Solution:** Implement a hypothesis testing procedure through the time change theorem.
- For any parameter θ_0 , we define the null hypothesis:
	- distribution.

\n- Additionally
$$
\mathcal{H}_{tot}
$$
: $\left(\Lambda_{\theta_0}\left(T_{(k+1)}\right) - \Lambda_{\theta_0}\left(T_{(k)}\right)\right)_k$ distribution.
\n

- \mathscr{H}_i tests the **goodness-of-fit** between θ_0 and the observations of process $N_i \to p$ -value: p_i .
- \mathscr{H}_{tot} tests the **goodness-of-fit** between θ_0 and the process N seen as a whole \rightarrow p -value: p_{tot} .

• Our data consists of 10 realisations of neuronal activations from a red-eared turtle. 223 neurons in total \rightarrow add a multiple testing procedure.

Ordered p -values for all hypothesis tests \mathscr{H}_i and \mathscr{H}_{tot} . p_{tot} appears as a cross for each model.

Numerical results: neuronal data

Numerical results: neuronal data

Support estimation (Empirical confidence interval)

Image from Park et al. (2013)

$\frac{1}{20}$ mV

Image from Peng et al. (2012)

• How is temporal data **collected** and **converted** to a point process realisation?

Second axis:

Spectral methods for imperfect data

• Data may contain **measurement errors** which may introduce bias to any standard inference procedure.

What is there in the literature for imperfect observations of point processes?

• Data may contain **measurement errors** which may introduce bias to any standard inference procedure.

The most common case is jittering or random displacement of points as in Antoniadis et al. (2006),

What is there in the literature for imperfect observations of point processes?

Trouleau et al. (2019) and Bonnet et al. (2022).

H: Hawkes process (*μ*, *h*)

• Data may contain **measurement errors** which may introduce bias to any standard inference procedure.

The most common case is jittering or random displacement of points as in Antoniadis et al. (2006),

- Trouleau et al. (2019) and Bonnet et al. (2022).
- In Cheysson et al. (2022), binned observations of H are studied through spectral theory.

What is there in the literature for imperfect observations of point processes?

H: Hawkes process (*μ*, *h*)

Noise by superposition

First scenario: additional external points (superposition)

H: Hawkes process (μ, h) *P*: Poisson process λ_0

• Data may contain **measurement errors** which may introduce bias to any standard inference procedure.

The most common case is jittering or random displacement of points as in Antoniadis et al. (2006),

- Trouleau et al. (2019) and Bonnet et al. (2022).
- In Cheysson et al. (2022), binned observations of H are studied through spectral theory.
- conditional log-likelihood of N given H .

What is there in the literature for imperfect observations of point processes?

• Lund et al. (2000) focuses on processes noised by **superposition**, thinning and jittering by studying the Staerman et al. (2024) for marked Hawkes processes by latent factor estimation through an EM algorithm.

Second scenario: missing points (thinning)

H: Hawkes process (*μ*, *h*)

• Data may contain **measurement errors** which may introduce bias to any standard inference procedure.

What is there in the literature for imperfect observations of point processes?

- The most common case is jittering or random displacement of points as in Antoniadis et al. (2006), Trouleau et al. (2019) and Bonnet et al. (2022).
- In Cheysson et al. (2022), binned observations of H are studied through spectral theory.
- conditional log-likelihood of N given H .
-

• Lund et al. (2000) focuses on processes noised by **superposition**, thinning and jittering by studying the Staerman et al. (2024) for marked Hawkes processes by latent factor estimation through an EM algorithm.

• The case of missing points, obtained by **thinning***,* is studied in Mei et al. (2019) and Deutsch et al. (2020).

- Let H be a univariate (or multivariate) self-exciting Hawkes process.
- Let N be the resulting point process obtained from by either superposition or by thinning. *H*
- **• Goal:** provide a parametric inference procedure of the parameters of H and of the noise.
- **• Challenge:** we do not have access to the distribution of N .

Intensity function of a univariate Hawkes process superposed to a homogeneous Poisson process

- **•** Spectral analysis from time series theory, introduced for point processes in Bartlett (1963).
	- results in \mathbb{R}^d (Yang et al. 2024).
	- **•** Application to locally stationary Hawkes processes (Roueff et al. 2015).
- Based on the the spectral density f and the periodogram I^T .
- The spectral density f characterises the second-order moment of a point process instead of focusing on its distribution.
- For an observation $(T_k)_{1\leq k\leq N([0,\,T])}$ of N , its periodogram reads, for any $\omega\in\mathbb{R}$:

Spectral theory of point processes

• Growing interest, in particular in spatial contexts (Rajala et al. 2023) with advancements in asymptotic

k=1 *l*=1 *N*(*T*) ∑ $e^{-2\pi i \omega (T_k^N - T_l^N)}$.

• This quantity can be computed even in the presence of measurement errors.

$$
I^T(\omega) = \frac{1}{T} \sum_{k=1}^{N(T)}
$$

The spectral log-likelihood

• The periodogram and the spectral density are asymptotically linked:

• The **spectral log-likelihood** (Whittle 1952) an be defined as:

$$
I^T(\omega) \xrightarrow{T \to +\infty} \text{Exp}\left(\frac{1}{f(\omega)}\right).
$$

And for any $(\omega_k)_{1\leq k\leq M}$ such that $\omega_i\neq\omega_i$ for all $i\neq j$, the r.v. $(I^{\prime}(\omega_k))_k$ are asymptotically independent. $(\omega_k)_{1\leq k\leq M}$ such that $\omega_i\neq\omega_j$ for all $i\neq j$, the r.v. $(I^T(\omega_k))_{k\in\mathbb{Z}}$

$$
\mathscr{C}_T = -\frac{1}{T} \sum_{k=1}^M \left(\log \left(f(\omega_k) \right) + \frac{I^T(\omega_k)}{f(\omega_k)} \right), \text{ for } \omega_k = k/T.
$$

- We obtain an estimation of the parameters by maximising ℓ_T .
- **Challenge:** obtain an expression of the spectral density f for our noised processes N .

The spectral density of noised processes

Proposition

 $p \in (0, 1)$.

1. The superposition $X + Y$ admits a spectral density such as:

 $f^{X+Y} = f$

2. The p -thinning X_p of X admits a spectral density such as:

$$
= f^X + f^Y.
$$

 $p(1-p) \mathbb{E}[\lambda^H(0)].$

$$
f^{X_p} = p^2 f^X + j
$$

Let X , Y be two independent stationary point processes with respective spectral densities f^X, f^Y and

Superposition noise

- Let, for any $t \in \mathbb{R}$, $h(t) = \alpha \beta e^{-\beta t}$ for $0 < \alpha < 1$ and $\beta > 0$.
- superposition $N = H + P$ is given by:

• The spectral density of a Hawkes process is known (Hawkes, 1971) and so the spectral density of the

The model $\hat{\mathcal{Q}}$ is **identifiable** if and only if one of the parameters in the 4-uplet $\theta = (\mu, \alpha, \beta, \lambda_0)$ is fixed.

$$
f^N(\omega) = \frac{\mu}{1-\alpha} \left(1 + \frac{\beta \alpha (2-\alpha)}{(\beta(1-\alpha))^2 + 4\pi^2 \omega^2} \right) + \lambda_0.
$$

We define the parametric model:

$$
\mathcal{Q} = \{f_{\theta}^{N} : \mathbb{R} \to \mathbb{C}, \quad \theta = (\mu, \alpha, \beta, \lambda_0) \in \Theta\}
$$

Proposition

Convergence of the estimator

The bivariate case

- process with constant rate λ_0 .
- **•** We define the parametric model:

The model \mathcal{Q}_{\wedge} is **identifiable** if: Λ

$$
\mathcal{Q}_{\Lambda} = \left\{ f_{\theta}^N : \mathbb{R} \to \mathbb{C}, \quad \theta = (\mu, \alpha, \beta, \lambda_0) \in \mathbb{R}_{>0}^2 \times \Lambda \times \mathbb{R}_{>0}^2 \times \mathbb{R}_{>0} \right\}
$$

Proposition

1.
$$
\Lambda = \left\{ \begin{pmatrix} \alpha_{11} & 0 \\ \alpha_{21} & 0 \end{pmatrix}, 0 \le \alpha_{11} < 1, \alpha_{21} > 0 \right\}.
$$

\n2. $\Lambda = \left\{ \begin{pmatrix} \alpha_{11} & 0 \\ \alpha_{21} & \alpha_{22} \end{pmatrix}, 0 < \alpha_{11} < 1, \alpha_{21} > 0, 0 \le \alpha_{22} < 1 \right\}.$

• Let H be a bivariate exponential Hawkes process ($h_{ij} = \alpha_{ij}\beta_i\text{e}^{-\beta_i t}$) and P a homogeneous bivariate Poisson

Boxplot of estimations for each parameter

Thinning noise

- Let, for any $t \in \mathbb{R}$, $h(t) = \alpha \beta e^{-\beta t}$ for $0 < \alpha < 1$ and $\beta > 0$.
- The spectral density of a p -thinned Hawkes process is given by:

• We define the parametric model:

$$
f^N(\omega) = \frac{\mu p}{1-\alpha} \left(1 + p \frac{\beta \alpha (2-\alpha)}{(\beta (1-\alpha))^2 + 4\pi^2 \omega^2} \right).
$$

$$
\mathcal{Q} = \{f_{\theta}^{N} : \mathbb{R} \to \mathbb{C}, \quad \theta = (\mu, \alpha, \beta, p) \in \Theta\}
$$

Proposition

The model $\hat{\mathcal{Q}}$ is **identifiable** if and only if one of the parameters in the 4-uplet $\theta = (\mu, \alpha, \beta, p)$ is fixed.

The p-thinning of a Hawkes process

- **• Advantage:** thinning a point process can be used as a **subsampling** (Biscio, 2019).
- **•** Subsampling can improve estimations when only a few realisations are available, which can be common in real data contexts.
- Let us compare the performance of spectral estimators with 1 observation of H in a small window $[0,T]$ in 4 scenarios:
	- **1.** θ : obtained by maximising the non-penalised spectral log-likelihood. ̂
	- **2.** θ^L : obtained by maximising the L_2 -penalised spectral log-likelihood. ̂ $\hat{\theta}^{L}$: obtained by maximising the L_{2}
	- **3.** $\hat{\theta}^{L}_{partition}$: the average estimation by partitioning the window $[0,T]$. ̂
	- **4.** $\hat{\theta}^{L}_{thinning}$: the average estimation obtained by p -thinning l times process $H.$ ̂

- We carry out the estimations in 1000 different estimations.
- cases.

Mean squared relative error (MSRE) of (μ, α, β) along with the MSRE of θ . Last column shows the proportion of times that each estimator achieves the lowest relative ℓ_2 error.

• The subsampling by thinning scheme provides the best MSRE overall and the best estimator in 70% of the

Conclusion

• Our contributions concern the study of two extensions of the classical Hawkes process model in parametric frequentist settings:

A. The study of additive inhibition:

- **•** Implemented the MLE for multivariate Hawkes processes.
- **•** Proposed three methods to infer the null interactions.
- our estimations

• Illustrated in neuronal activity data with a multiple testing procedure to compare models and validate

Chapter 3: Bonnet, A., Martinez Herrera, M., Sangnier, M., "Maximum Likelihood Estimation for Hawkes Processes with self-excitation or inhibition." (2021) in *Statistics and Probability Letters.*

Chapter 4: Bonnet, A., Martinez Herrera, M., Sangnier, M., "Inference of multivariate exponential Hawkes processes with inhibition and application to neuronal activity." (2023) in *Statistics and Computing.*

Conclusion

• Our contributions concern the study of two extensions of the classical Hawkes process model in parametric frequentist settings:

B. Accounting for measurement errors in the form of additional or missing points:

- **•** Studied the spectral density of two models of noised Hawkes processes.
- **•** Proposed different conditions to retrieve identifiability for the statistical models.
- **•** Applied the results concerning the thinning of a point process to improve numerical estimations.

of noisy Hawkes processes." (2024) *In revision.*

Chapter 6: Cheysson F., Martinez Herrera, M., "A numerical exploration of thinned Hawkes processes through spectral theory." *Ongoing work.*

- **Chapter 5:** Bonnet, A., Cheysson, F., Martinez Herrera, M., Sangnier, M., "Spectral analysis for the inference
	-

- more accurately a wider spectrum of phenomena.
- Add **Ridge and Lasso penalisation** methods with efficient optimisation procedure and parameter
- world data (like neuronal activity).
- Establish **asymptotic results** for our estimators \rightarrow gain access to asymptotic confidence intervals.

• Extend the MLE procedure with inhibition to **other kernel functions and non-linear functions** model →

selection paradigms \rightarrow improve estimations in particular to better estimate the interaction matrix.

• Extend the study of noised Hawkes processes to *include inhibition* \rightarrow open up the applications to real

Thank you very much

• There are three possible scenarios for the restart times:

 $\lambda^{i \star}(T_{(k)}) < 0$ $\lambda^{i*}(T_{(k+1)}^{-}) > 0$ $T_{(k)} + \beta_i^{-1} \log \left(\frac{\mu_i - \lambda^{i*}(T_{(k)})}{\mu_i} \right)$ $\overline{T}_{(k+1)}$ $T^{i\,\star}_{(k)}$

 $\lambda^{i \star}(T_{(k)}) < 0$ $\lambda^{i\star}(T_{(k+1)}^{-})\leq 0$

Numerical results: simulated data

- Simulations in dimension $d = 10$ compared to:
	- Approximated log-likelihood maximisation procedure (Lemonnier et al. 2014).
	- Least-squares minimisation procedure (Bacry et al. 2020).

Appendix | Algorithm of log-likelihood computation (multivariate)

Algorithm 1: Estimation of log-likelihood $\ell_t(\theta)$ of a multivariate exponential Hawkes process.

Input Parameters μ^i , α_{ij} , β_i for $i, j \in \{1, ..., d\}$, list of event times and marks $(T_{(k)}, m_k)_{k=1:N(t)}$ **Initialisation** Initialize for all i, $\Lambda_k^i = \mu^i$ $\ell_t(\theta) = \log(\lambda^{m_1 \star}(T_{(k)}^-)) - \sum_{i=1}^d \Lambda_k^i;$ for $k = 2$ to $N(t)$ do Compute for all *i*, $T_{(k-1)}^{i*} = \min \left(T_{(k-1)} \right)$ Compute for all i , $\Lambda_k^i = \mu^i (T_{(k)} - T_{(k-1)}^{i*}) + \beta_i^{-1} (\lambda_k^{i*} - \mu)$ Compute for all i, $\lambda^{i*}(T_{(k)}^-) = \mu^i + (\lambda)^i$ Update $\ell_t(\theta) = \ell_t(\theta) + \log(\lambda^{m_k \star}(T_{(k)})) - \sum_{i=1}^d \Lambda_k^i$ Compute for all *i*, $\lambda_k^{i*} = \lambda^{i*}(T_{(k)}^-) + \alpha_{im_k};$ end

Compute for all *i*, $T_{(N(t))}^{i*} = \min \left(T_{(N(t))} \right)$ Compute for all i ,

 $\Lambda_k^i = \left[\mu^i(t - T^{i\star}_{(N(t))}) + \beta_i^{-1} (\lambda_k^{i\star} - \mu^i)(e^{-i\omega}) \right]$ Update $\ell_t(\theta) = \ell_t(\theta) - \sum_{i=1}^d \Lambda_k^i$; **return** Log-likelihood $\ell_t(\theta)$.

$$
{}^{i}T_{(1)},\,\lambda^{i\star}(T_{(k)}^{-})=\mu^{i},\,\lambda_{k}^{i\star}=\mu^{i}+\alpha_{im_{1}}\,\,\text{and}\,\,
$$

$$
\begin{aligned} &\mu_{-1} + \beta_i^{-1} \log \left(\frac{\mu^i - \lambda_k^{i\star}}{\mu^i} \right) 1\!\!1_{\{\lambda_k^{i\star} < 0\}}, T_{(k)} \Big); \\ &\mu^i \big) \big(e^{-\beta_i (T_{(k-1)}^{i\star} - T_{(k-1)})} - e^{-\beta_i (T_{(k)} - T_{(k-1)})} \big); \\ &\mu^i_{k} - \mu^i \big) e^{-\beta_i (T_{(k)} - T_{(k-1)})}; \\ &\mu^i - \sum_{i=1}^d \Lambda_k^i; \end{aligned}
$$

+
$$
\beta_i^{-1}
$$
 log $\left(\frac{\mu^i - \lambda_k^{i*}}{\mu^i}\right) \mathbb{1}_{\{\lambda_k^{i*} < 0\}}, t\right);$
\n- $\beta_i (T_{N(t)}^{i*} - T_{(N(t))}) = e^{-\beta_i (t - T_{(N(t))})}\right] \mathbb{1}_{\{t > T_{(N(t))}^{i*}\}};$

Appendix | Restart times

 \boldsymbol{t}

Theorem

Let $(T_{(k)})_{k>0}$ be a realisation of a multivariate Hawkes process H and \mathscr{H}_t be the corresponding filtration.

Let us assume that a.s. for every $(i,j) \in \{1,...,d\}^2$, $i \neq j$, there exist an event time τ from process N^j , and an event time $\tau_+ > \tau$ from process N^{\prime} , such that: $\tau_+ > \tau$ from process N^i

$$
\bullet \quad \lambda_{\theta_i}^i(\tau^-) > 0.
$$

• There are only events of process N^j in the interval $[\tau, \tau_+).$

Then for any $\theta' \in \Theta$,

$$
\forall i \in \{1, ..., d\}, \quad \lambda_{\theta_i}^i(t \mid \mathcal{H})
$$

 $(t | \mathcal{H}_t) = \lambda_{\theta}^i$ $\theta_i^l(t \mid \mathcal{H}_t)$ a.e. $\iff \theta = \theta'$.

2. Support estimation by thresholding or empirical confidence interval

Appendix | Empirical confidence estimation

Appendix | Benjamini-Hochberg

• The **Benjamini-Hochberg** procedure for multiple testing \rightarrow control the False Discovery Rate (FDR)

 $FDR =$

where V is the number of false discoveries and S is the number of true discoveries.

• For a given confidence level $1 - \alpha$ and a collection of ordered p -values $(p_{(k)})_{1 \leq k \leq m}$, find the largest k such that:

• Reject all null hypothesis $\mathcal{H}_{(i)}$ such that $i \leq k$.

$$
: \mathbb{E}\left[\frac{V}{S+V}\right] \;,
$$

$$
f(\omega) = m_1^H \frac{1}{|1 - \alpha \tilde{h}(\omega)|^2}
$$

Spectral density of a Hawkes process with function *h***:**

Spectral density of a multivariate Hawkes process:

$$
f(\omega) = \left(I_d - \tilde{h}(\omega)\right)^{-1}
$$

$$
\mathsf{diag}(m^H) \Big(I_d - \tilde{h}(-\omega)^T \Big)^{-1}
$$

Appendix / Spectral densities of the Hawkes process

Appendix / Bivariate non-identifiable

- process with constant rate λ_0 .
- **•** We define the parametric model:

The model \mathcal{Q}_Λ is **not** identifiable if: Λ

$$
\mathcal{Q}_{\Lambda} = \{f_{\theta}^{N} : \mathbb{R} \to \mathbb{C}, \quad \theta = \mu\}
$$

Proposition

1.
$$
\Lambda = \left\{ \begin{pmatrix} \alpha_{11} & 0 \\ 0 & \alpha_{22} \end{pmatrix}, 0 \le \alpha_{11}, \alpha_{22} < 1 \right\}
$$

\n2. $\Lambda = \left\{ \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ 0 & 0 \end{pmatrix}, 0 < \alpha_{11} < 1, \alpha_{12} > 0 \right\}$

• Let H be a bivariate exponential Hawkes process ($h_{ij} = \alpha_{ij}\beta_i\text{e}^{-\beta_i t}$), P a homogeneous bivariate Poisson

$\theta^{\prime\prime}$: ℝ → ℂ, $\theta = (\mu, \alpha, \beta, \lambda_0) \in \mathbb{R}_{>0}^2 \times \Lambda \times \mathbb{R}_{>0}^2 \times \mathbb{R}_{>0}$

Appendix / Estimation w.r.t. p

Appendix / Distribution of estimations with subsampling

Appendix / Non-parametric estimation of the spectral density of H

