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Inference of non-linear or imperfectly observed Hawkes processes
Abstract

The Hawkes point process is a popular statistical tool to analyse temporal patterns. Modern applications
propose extensions of this model to account for specificities in each field of study, which in turn complex-
ifies the task of inference. In this thesis, we advance different approaches for the parametric estimation of
two submodels of the Hawkes process in univariate and multivariate settings. Motivated by the modelling
of complex neuronal interactions observed from spike train data, our first study focuses on accounting
for both inhibition and excitation effects between neurons, modelled by the non-linear Hawkes process.
We derive a closed-form expression of the log-likelihood in order to implement a maximum likelihood
procedure. As a consequence of our approach, we gain access to a goodness-of-fit scheme allowing us
to establish ad hoc model selection methods to estimate the interaction network in the multivariate
setting. The second part of this thesis focuses on studying Hawkes process data noised by two different
alterations: adding or removing points. The absence of knowledge on the noise dynamics makes classical
inference procedures intractable or computationally expensive. Our solution is to leverage the spectral
analysis of point processes to establish an estimator obtained by maximising the spectral log-likelihood.
By deriving the spectral densities of the noised processes and by establishing identifiability conditions
on our model, we show that the spectral inference method does not necessitate any information on the
structure of the noise, effectively circumventing this issue. An additional result of the study of Hawkes
processes with missing points is that it gives access to a subsampling paradigm to enhance the estima-
tion methods by introducing a penalisation parameter. We illustrate the efficiency of all of our methods
through reproducible numerical implementations.

Keywords: hawkes processes, parametric inference, identifiability, inhibition, spectral theory, neuronal
data

Résumé

Le processus ponctuel de Hawkes est un outil statistique très répandu pour analyser des dynamiques
temporelles. Les applications modernes des processus de Hawkes proposent des extensions du modèle
initial pour prendre en compte certaines caractéristiques spécifiques à chaque domaine d’étude, ce qui
complexifie les tâches d’inférence. Dans cette thèse, nous proposons différentes contributions à l’esti-
mation paramétrique de deux variantes du processus de Hawkes dans les cadres univarié et multivarié.
Motivée par la modélisation d’interactions complexes au sein d’une population de neurones, notre pre-
mière étude porte sur la prise en compte conjointe d’effets excitateurs et inhibiteurs entre les signaux
émis par les neurones au cours du temps, modélisés par un processus de Hawkes non-linéaire. Dans ce
modèle, nous obtenons une expression explicite de la log-vraisemblance qui nous permet d’implémenter
une procédure de maximum de vraisemblance. Nous établissons également une méthode de sélection
de modèle qui fournit notamment une estimation du réseau d’interactions dans le cadre multivarié. La
deuxième partie de cette thèse est consacrée à l’étude des processus de Hawkes bruités par deux types
d’altérations : l’ajout ou la suppression de certains points. Le manque d’information lié à ces mécanismes
de bruit rend les méthodes classiques d’inférence non-applicables ou numériquement coûteuses. Notre
solution consiste à s’appuyer sur l’analyse spectrale des processus ponctuels afin d’établir un estimateur
obtenu en maximisant la log-vraisemblance spectrale. Nous obtenons l’expression des densités spectrales
des processus bruités et, après avoir établi des conditions d’identifiabilité pour nos différents modèles,
nous montrons que cette méthode d’inférence ne nécessite pas de connaître la structure du bruit, contour-
nant ainsi le problème d’estimation. Notre étude sur les processus bruités donne accès à une méthode
de sous-échantillonnage qui nous permet d’améliorer les approches d’estimation en introduisant un pa-
ramètre de pénalisation. Nous illustrons la performance des différentes méthodes proposées à travers des
implémentations numériques reproductibles.

Mots clés : processsus de hawkes, inférence paramétrique, identifiabilité, inhibition, théorie spectrale,
données neuronales

Laboratoire de Probabilités, Statistique et Modélisation
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France
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Introduction

This chapter is a general introduction to Hawkes processes and the challenges explored in this
manuscript. After a succinct presentation of Hawkes processes with excitation, we contextualise
the state-of-the-art literature concerning estimation methods in Section 1.1 and present the main
questions that guide our research. This allows us to exhibit the two paradigms that are studied
in this work: inhibition and imperfect data. Section 1.2 pertains to the parametric estimation of
both univariate and multivariate Hawkes processes with potential inhibiting interactions (detailed
in Chapters 3 and 4). Section 1.3 presents our contributions to the study of imperfectly observed
exciting Hawkes processes (detailed in Chapters 5 and 6). A general outline of this manuscript
is described in Section 1.4.
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1.1 Statistics for Hawkes processes

1.1.1 The self-exciting point process
In probability and statistics, modelling random collections of points in a certain space is com-
monly done through a point process. When studying point processes on the real line R (or the
half line R≥0), the natural order of this space often incurs an ordering of any countable sequence
of points (Tk)k∈Z: we talk then of temporal point processes.

In statistics, it is a common question to analyse the dynamics describing the occurrences of
a certain phenomenon: the time of arrival of buses at a bus stop, the apparition of symptoms
in a population or earthquake incidents in a region of the world. The simplest model for point
processes is the homogeneous Poisson process, where the waiting times between any two event
times are i.i.d distributed as an exponential random variables with parameter λ > 0, known
as the intensity of the process. A natural extension of this model is obtained by allowing the
intensity to be a deterministic non-negative function λ : R → R≥0, adding a temporal dependence
on point arrivals.

The Hawkes process

In 1971, Alan G. Hawkes introduces a past-dependent model, initially called self-exciting point
processes (Hawkes 1971), which will later be known as the Hawkes point process. Let Ht =
σ({Tk | k ∈ Z, Tk ≤ t}) denote the past history of a process N for any t ∈ R, we define the
conditional intensity function λ : R → R>0 of this process as:

λ(t | Ht) = lim
h→0

E[N([t, t+ h]) | Ht]

h
.

The Hawkes process is then defined by the following expression of the conditional intensity
function:

λ(t | Ht) = µ+
∑
Tk≤t

h(t− Tk) . (1.1)

Remark. In the literature, it is common to omit writing the history Ht as it is directly implied
that λ has access to the entire past of the process. We follow this convention throughout this
work, unless marked otherwise.

The term µ is often referred to as the baseline intensity which dictates a constant rate of oc-
currences, similar to a homogeneous Poisson process. The dependence on the past is represented
by the second term in Equation (1.1), where each event time that precedes t contributes to the
intensity function through the interaction function h : R≥0 → R≥0, also calles the kernel.

Positivity of h represents an excitation effect between points: each point Tk in the past
increases the value of the intensity function, which in turn increases the rate at which points in
the future appear. For stability reasons, h is assumed to converge to 0 as t→ +∞, representing
the rate at which the effects from the past are “forgotten”.

Different shapes of h allow to account for different effects. On the one hand, strictly decreasing
functions such as exponential (Ozaki 1979; Ogata 1988) or power-law kernels (Zhang 2016)
represent instantaneous effects, which appear as spikes in the conditional intensity function
(Equation (1.1)). On the other hand, Rayleigh or gamma kernels (Lesage et al. 2022), where
the maximum of the function is not at the origin t = 0, can be chosen to represent delayed
effects. Figure 1.1 illustrates two Hawkes processes with two different kernels. The properties of
the conditional intensity function are intrinsically connected to those of h, and so when working
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in parametric settings, the choice of the kernel is essential and comes with its advantages and
inconveniences.
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Figure 1.1: Kernel functions (top) and respective conditional intensity functions (bottom) of a
Hawkes process started at t = 0 with baseline intensity µ = 1.

Clustering and branching structures

A direct consequence of the expression of the intensity function (Equation (1.1)) is that the
Hawkes process model can be interpreted as a Poisson cluster process (Hawkes et al. 1974). The
most practical way of defining a cluster process (Bartlett 1963) is from a generative point of view.
We begin by simulating a homogenenous Poisson process on the real line R with parameter µ:
these points T c

k are often called ancestors, immigrants or cluster centers. Each ancestor generates
an inhomogeneous Poisson process with intensity function h(·−T c

k ), forming a family of children
points, also called descendants. The iteration is repeated with each new point generating its
own subprocess until no descendants are generated. In the end, the cluster process is formed by
the union of both ancestors and descendants. The particularity of a Hawkes process is that the
support of the function h is a subset of R≥0, meaning that each occurrence influences solely the
future of the process.

This kind of process is also known as the Poisson branching process (Lewis 1964) as it de-
scribes a generation dynamic similar to the Galton-Watson branching process (see Watson et al.
(1875) for the discrete time version and Harris (2002, Chapter III) for the generalised version).
More precisely, the Hawkes process can be seen as a time-continuous branching process with
immigration: let us assume we observe the arrival of an immigrant at a time T c

k . This immigrant
will produce a first generation of children, forming the first set of points, or branches. Then, each
child becomes a parent and generates a new set of branches. A tree is then formed by the union
of each immigrant and all of its branches, and then the Hawkes process is once again formed by
the union of all trees.

A visualisation of both structures is illustrated in Figure 1.2 for a Hawkes process with
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exponential kernel. The clustering (equivalently branching) structure is one of the properties
that made Hawkes processes so attractive in the literature. From a theoretical point of view,
the many existing developments of branching theory allowed to quickly obtain results concerning
existence, stability and stationarity. A main example concerns the existence of a self-exciting
Hawkes process: in order for the point process to have a finite number of points inside any
bounded set, a necessary and sufficient condition (Hawkes et al. 1974, Lemma 1) is:∫ +∞

0

|h(t)|dt < 1 ,

which is derived from the subcriticality condition of Galton-Watson processes.
From a numerical point of view, the definition of a Poisson cluster process, as given above,

provides a simulation algorithm. An inference method inspired from branching process theory
was adapted to the study of Hawkes processes (Veen et al. 2008).

The aforementioned properties, and the quick developments that followed in the literature,
created a growing interest in other scientific fields. From this, different versions of the original
self-exciting Hawkes process appeared in the literature, each one trying to accommodate to more
complex phenomena.

The multivariate Hawkes process

Probably the most natural and useful extension is the definition of the multivariate Hawkes
process. Instead of studying a single phenomenon (a univariate process), we define a d-variate
Hawkes process as d individual point processes (Ni)i=1:d interacting together, where each process
is defined by a conditional intensity function λi:

λi(t) = µi +

d∑
j=1

∑
T j
k≤t

hij(t− T j
k ) , for any t ∈ R.

In this formulation, each process Nj has its own event times (T j
k )k∈Z and baseline intensity

µj > 0. This model introduces interactions between processes, which appear in the second term
of the intensity. The kernel functions hij represent the effect of points from Nj on process Ni.
This model allows to study a group of individuals linked by a network of interactions, adding a
new dimension of study for such processes.

From modelling infection spread all the way to analysing clusters of earthquakes, the study
of Hawkes processes from a statistical point of view quickly became a central topic of interest.

1.1.2 Inference and applications

Statistical estimation

Statistical challenges for Hawkes processes with excitation focus around estimating both the
baseline intensity µ and the interaction function h.

To our knowledge, the very first paper implementing an estimation procedure in a parametric
framework is Adamopoulos (1976). In his work, the author proposes a study of exponential
kernels for both univariate and bivariate Hawkes processes through the spectral log-likelihood,
closely related to time series theory. The exponential kernel is often chosen as a parametric
interaction function because in this case the univariate Hawkes process becomes a Markov process
which presents the advantage of simplifying the expression of the intensity function. This is
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exemplified in the implementation of the maximum likelihood estimator (MLE) in Ozaki (1979).
The expression of the log-likelihood of a general point process, for an observation in [0, T ], is:

ℓT (θ) = −
∫ T

0

λ(u) du+

N(T )∑
k=1

log(λ(T−
k )) , (1.2)

where N(T ) is the number of points in the observation window. Other works address estimation
in the parametric setting, such as Ogata (1988) for other kernel functions using the MLE, Veen
et al. (2008) leveraging the branching structure, Bacry et al. (2020) minimising a least-squares
contrast and Da Fonseca et al. (2013) via the method of moments.

The literature regarding non-parametric inference is also vast with implementations of the
MLE in Guo et al. (2018) and a penalised variant optimised by an Expectation-Maximisation
algorithm. The least-squares minimisation is often used as shown in Reynaud-Bouret et al.
(2009), Eichler et al. (2016), and Kirchner (2017). Other methods include solving Wiener-Hopf
equations (Bacry et al. 2016) or approximating the interaction functions with autoregressive
models (Kirchner 2017).

All of these references concern frequentist approaches of statistics, and so it is essential to
mention that an equal effort has been made from a Bayesian point of view. Rasmussen (2013)
proposes two procedures through log-likelihood estimation: one through the classical intensity
function and another similar to Veen et al. (2008) with the branching structure. In Lemonnier
et al. (2014), the authors propose an approximation through exponential kernels and taking
advantage of the Markovian properties. The multivariate case is deeply studied in Donnet et al.
(2020) with illustrations on estimating the underlying interaction graph.

This is jus a small sample of the plethora of approaches that have been developed in order
to study these kind of processes.

Applications and generalisations

The temporal-dependency structure of Hawkes process has motivated its use accross a variety of
application fields with many generalisations to obtain more explicative models.

The historical example is the study of seismic activity where the occurrence of an earthquake
is usually followed by a number of smaller tremors known as aftershocks. This behaviour is
similar to the self-exciting effect modelled by the Hawkes process and associated with the clus-
tering structure, as shown in Adamopoulos (1976). As in seismology the spatial placement and
magnitude of each quake are important factors to take into account, applications in this field
tend to include this information via the concept of marked point processes. Each event time has
an associated mark representing the detected magnitude (Ogata 1988) and the location of each
epicenter (Ogata 1998; Kwon et al. 2023).

A similar approach is proposed in the study of social media interactions for the analysis of
subject trends. The excitation effect appears in the form of reposting where users have the option
to share a news post among their followers which in turn may continue to spread the information
in their social circles. In this context, the impact of each repost is dependent on the influence of
the account and the impact of a topic on a certain community. This is represented for example
by including information in the form of number of followers (Mishra et al. 2016) again through
marks, or by adding an additional dimension to the process (Pinto et al. 2015) to represent the
impact of a topic over another.

In criminology, it is commonly assumed that delinquent acts may incite other crimes in a
population, which can be modelled by a self-exciting Hawkes process. As a branch of social
sciences, it is important to account for different factors that affect human behaviour such as time
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of the day, demographics and social interactions. A way of accounting for these effects is to adapt
the Hawkes process to time and spatial dependent baseline intensities. A time-varying baseline
intensity can represent periodic criminal behaviour (Lewis et al. 2011) with higher values for
nightime. A space-dependent baseline is used to represent the link between residential density
and burglary (Mohler et al. 2011) or the spatial distributions of gangs in a city (Linderman et al.
2014).

Many other fields include finance (Embrechts et al. 2011; Bacry et al. 2013; Roueff et al. 2019;
Lotz 2024), genomics (Reynaud-Bouret et al. 2009; Carstensen et al. 2010), ecology (Denis et al.
2024; Nicvert et al. 2024), epidemiology (Rizoiu et al. 2018; Chiang et al. 2022), TV browsing
behaviour (Xu et al. 2016), event data streams in football (Baouan et al. 2023; Narayanan et al.
2023), each one often accompanied with new formulations of the Hawkes process.

1.1.3 Challenges and contributions
Our work is motivated by the applications of Hawkes processes in neurobiology for the study
of neuronal activity data (Reynaud-Bouret et al. 2013; Lambert et al. 2018; Duval et al. 2022).
Neurons in the brain are connected through a deep network of synapses allowing them to com-
municate through electrical impulses usually studied by measuring the action potential or spikes
emitted as the membrane potential of the cells is depolarised. These measurements generate a
spike train of instants when a neuron activates and influences the membrane potential of con-
necting neighbours.

These exchanges can appear either as excitatory or inhibitory to respectively incite or stop
other neurons from activating. The first effect can be clearly modelled by a multivariate Hawkes
process but the original modelling does not account for inhibiting effects. In practice, this requires
to allow for the interaction functions hij to take negative values, introducing the concept of
Hawkes processes with inhibition.

In order to guarantee the non-negativity of the intensity function, a common practice in the
literature is to consider the concept of non-linear Hawkes processes. The main difficulty is that the
branching structure of Hawkes processes is not valid any longer and the intensity function presents
more complex behaviour, so pre-established inference methods are not accessible anymore. The
first part of this manuscript pertains to the study of inhibiting Hawkes processes in order to
propose estimation methods in the parametric setting. We present an overview of the studied
model and our contributions in Section 1.2.

The second part of this manuscript is focused around studying imperfect data. Collecting
spike trains data is a procedure that can present measurement errors, which can appear as missing
neuronal activation instants or by attributing spikes to the wrong neuron.

This setting represents a common statistical framework of accounting for missing data in
an observed process. In our context, not having a full knowledge on the past history of the
process makes the conditional intensity function intractable. Our contributions, as summarised
in Section 1.3, are focused on exhibiting an inference paradigm through the spectral analysis of
point processes for observations noised either by adding points from an external process or by
deleting event times.

Although the models inbetween chapters may differ, our contributions follow a common thread
by addressing the following four questions.
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• What approaches can we take to establish parametric estimation procedures for
more complex Hawkes processes dynamics?

• Under which conditions are our statistical models identifiable?

• How to evaluate and select the best estimators through data-driven methods?

• Which modern statistical tools can we leverage to improve our inference procedures?

1.2 Factoring in inhibition for Hawkes processes

1.2.1 Context and related works
The original Hawkes process was proposed as a way of modelling the effect of excitation between
points, which is characterised by the positivity of the interaction function h. Our first goal in
this work is to study the opposite effect which is commonly known in the literature as inhibition.

An inhibiting Hawkes process consists in modelling repulsion between points: each event will
reduce the chances of others occurring during a certain period of time. Mathematically, a way
of translating this effect is by allowing h to take negative values. However, the non-negativity
condition on λ prevents us from adopting this approach without adding some constraints.

One of the most common solutions is the non-linear Hawkes process model. In the univariate
setting, let h : R≥0 → R and Φ : R → R≥0 be two measurable functions. We define a univariate
non-linear Hawkes processN on the real half-line R≥0 with event times (Tk)k∈N by the conditional
intensity function, for any t ∈ R≥0:

λ(t) = Φ

µ+
∑
Tk≤t

h(t− Tk)

 . (1.3)

By allowing h to be negative, the function Φ has to be a non-linear function. Existence of such
processes is ensured as long as Φ is an L-Lipschitz function (Brémaud et al. 1996, Theorem 1)
such that:

L

∫ +∞

0

|h(t)|dt < 1 .

Multiple choices exist in the literature like a clipped exponential function (Chornoboy et al.
1988; Carstensen et al. 2010; Gerhard et al. 2017), a softplus function (Mei et al. 2017), a
sigmoid function (Menon et al. 2018), among others.

In our work, we choose the positive part (ReLU) Φ(·) = (·)+ = max(0, ·) like in Lemonnier
et al. (2014), Hansen et al. (2015), Lu et al. (2018), and Costa et al. (2020). The intensity
function (Equation (1.3)) becomes:

λ(t) =

µ+
∑
Tk≤t

h(t− Tk)

+

, (1.4)
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and the extension to a d-variate Hawkes process is:

λi(t) =

µi +

d∑
j=1

∑
T j
k≤t

hij(t− T j
k )

+

, (1.5)

for each process Ni.
Our general contribution in the context of Hawkes processes with inhibition is to provide

parametric estimation procedures in a frequentist framework through maximum likelihood esti-
mation. To our knowledge, and by the time of publication of both corresponding papers, other
frequentist approaches (Reynaud-Bouret et al. 2014; Bacry et al. 2016) do not model inhibition
but can provide negative estimations. In Bayesian contexts, works modelling non-linear Hawkes
processes focus around the log-likelihood. In Deutsch et al. (2024), the compensator is computed
exactly in the case where the interaction functions hij are exponential with shared decay rate (a
similar result to the one presented in Chapter 4, obtained independently during the same period).
In practice, an approximation of the compensator through a Simpson’s rule is proposed for more
general scenarios. This gives access to posterior density estimates in a parametric setting. Works
in non-parametric settings include Sulem et al. (2024) that derives posterior concentration rates
and Sulem et al. (2023) proposing a variational Bayes method and a sparsity-inducing version
based on a model selection paradigm.

1.2.2 Maximum Likelihood Estimation for Hawkes Processes with self-
excitation or inhibition

In Chapter 3, we focus on the study of the univariate Hawkes process N with intensity function
described by Equation (1.4). In order to establish the maximum likelihood estimator for a
parametrised model of the intensity with parameter θ ∈ Θ, it is necessary to obtain a closed-
form expression of the log-likelihood:

ℓT (θ) = −
∫ T

0

λθ(u) du+

N(T )∑
k=1

log(λθ(T
−
k )) .

For Hawkes processes with excitation, the linearity of the intensity function results in an
explicit expression of ℓT without much trouble, as shown in Ozaki (1979). The main difficulty
when including inhibition is that the cumulated effects from the past events may saturate process
N , meaning that its intensity is null for a certain period of time. In the work of Lemonnier et al.
(2014), the authors propose to approximate the computation in this context by ignoring the
non-linear function. This allows them to circumvent this problem at the cost of assuming that
the inhibition effects are small enough to be negligible.

In order for us to obtain an exact computation of the log-likelihood that accounts for inhibi-
tion, we introduce two novel concepts: the underlying intensity function λ⋆ and the restart times
(T ⋆

k )k≥1. We define λ⋆ : R≥0 → R, for any t ≥ 0, as:

λ⋆(t) = µ+
∑
Tk≤t

h(t− Tk) ,

and the restart times T ⋆
k for any integer k > 0 as:

T ⋆
k = inf{t ≥ Tk | λ(t) > 0} .
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The advantage of working with λ⋆ instead of λ is that it inherits properties such as smoothness
and strict monotonicity from the interaction function h between any two consecutive event times
Tk and Tk+1. If assumed so, it follows that T ⋆

k is the moment from which both functions coincide.
Our main contribution is to provide a closed-form expression of the compensator

∫ T

0
λθ(u) du,

which we establish in Proposition 1.2.1.

Proposition 1.2.1. For any t > 0:

∫ t

0

λ(u) du =


µt if t < T1

µT1 +

N(t)−1∑
k=1

∫ Tk+1

T⋆
k

λ⋆(u) du+

∫ t

T⋆
N(t)

λ⋆(u) du if t ≥ T1 ,
(1.6)

with the conventions that the sum is equal to 0 if N(t) = 1 and the last integral is equal to 0 if
t < T ∗

N(t).
If we consider the exponential kernel h : t 7→ αe−βt for parameters α > 0, β > 0, then the

restart times read:
T ⋆
k = Tk + β−1 log

(
λ0 − λ⋆(Tk)

λ0

)
1λ⋆(Tk)<0 ,

and, for any integer k ≥ 1 and any τ ∈ [T ∗
k , Tk+1], each integral simplifies to :∫ τ

T⋆
k

λ⋆(u) du = λ0(τ − T ⋆
k ) + β−1(λ⋆(Tk)− λ0)(e

−β(T⋆
k−Tk) − e−β(τ−Tk)) .

This result allows to establish the maximum likelihood estimation procedure that accounts for
both self-exciting and self-inhibiting effects, while keeping the same computational complexity
as the method implemented in previous works. In particular, for the exponential kernel function,
the computational complexity of ℓT is O(N(T )) thanks to the Markovian property and, as
shown in our numerical study, the derived estimations are better than by using an approximation
framework (as presented in Lemonnier et al. (2014)) especially for high levels of inhibition effects.

A second consequence of Proposition 1.2.1 is that it gives access to a goodness-of-fit measure
for our estimations by leveraging the Time Change theorem of point processes (Daley et al. 2003,
Theorem 7.4.IV). In particular, this allows us to introduce a hypothesis testing procedure that
evaluates the quality of our estimations on an independent set of observations.

1.2.3 Inference of multivariate exponential Hawkes processes with in-
hibition and application to neuronal activity

Chapter 4 builds upon the bases established in Chapter 3 to derive an estimation procedure for
multivariate Hawkes processes N = (N1, . . . , Nd). In this setting the log-likelihood of N reads:

ℓT (θ) =

d∑
i=1

−
∫ T

0

λiθ(u) du+

Ni(T )∑
k=1

log(λiθ(T
i−
k ))

 ,

where λiθ and (T i
k)k are respectively the candidate intensity and event times of Ni. Process N

can be seen as a univariate point process with its event times (T(k))k being the ordered union
of (T i

k)k for all integers i = {1, . . . , d}. To alleviate the notations, we will omit the subscript
θ unless said otherwise. Similarly to the univariate case, we propose to study the underlying
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intensity functions λi⋆:

λi⋆(t) = µi +

d∑
j=1

∑
T j
k≤t

hij(t− T j
k ) ,

but this time the monotonicity condition of hij is not enough to retrieve useful properties for
this functions.

This is a consequence of the increased complexity of the dynamics of each subprocess that
allows both exciting and inhibiting effects to exist simultaneously. In the multivariate setting,
it is possible for a subprocess Ni to be saturated (λi(t) = 0) at an instant t and to receive an
external excitation of another subprocess. So, in order to simplify our problem, we restrict our
study to the exponential kernel case hij(t) = αije

−βijt with the following mild assumption.

Assumption 1. For each i ∈ {1, . . . , d}, there exists βi ∈ R>0 such that βij = βi for all
j ∈ {1, . . . , d}.

This allows us to recover the strict monotony of λi⋆ between any two event times T(k) and
T(k+1) of the general process N . With this, we adapt the expression of the restart times (T i⋆

(k))k≥1

and the compensator
∫ t

0
λi(u) du for each process Ni and every event time T(k), allowing us to

establish our first contribution in the form of Proposition 1.2.2.

Proposition 1.2.2. Let us suppose that Assumption 1 is granted. Then, for each i ∈ {1, . . . , d}
and any k ≥ 1, we have:

T i⋆
(k) = min

(
t⋆k, T(k+1)

)
. (1.7)

where

t⋆k =

(
T(k) + β−1

i log

(
µi − λi⋆(T(k))

µi

)
1{λi⋆(T(k))<0}

)
.

And, for each i ∈ {1, . . . , d}, the compensator of the process Ni reads, for any t ≥ 0:∫ t

0

λi(u) du =

{
µit if t < T(1)

µiT(1) +
∑N(t)

k=1 Jk if t ≥ T(1) ,
(1.8)

where for all integer k ∈ {1, . . . , N(t)}:

Jk = µi

[
min(t, T(k+1))− T i⋆

(k)

]
+ β−1

i

(
λi⋆(T(k))− µi

) [
e−βi(T

i⋆
(k)−T(k)) − e−βi(min(t,T(k+1))−T(k))

]
.

With this result, we establish an exact procedure to compute the log-likelihood ℓiT of each
process Ni, giving us access to the complete log-likelihood ℓT and in turn, access to the maximum
likelihood estimation method. Let us note that as in the univariate case, we also get access to a
goodness-of-fit procedure via the Time Change theorem.

Another complication in the multivariate setting is that the identifiability of our statistical
model for the exponential Hawkes process is not as straightforward as in the univariate case. To
partially answer this question, we provide a sufficient condition in Theorem 1.2.1 to ensure the
identifiability of the intensity functions.

Theorem 1.2.1 (Identifiability). For all i ∈ {1, . . . , d}, let θi ∈ Θ be a parameter for λi.
Let us assume that a.s. for every (i, j) ∈ {1, . . . , d}2, i ̸= j, there exist an event time τ from

process Nj, and an event time τ+ > τ from process Ni, such that:

1. λiθi(τ
−) > 0;
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2. there are only events of process N j in the interval [τ, τ+).

Then,

∀i ∈ {1, . . . , d}, λiθi(t) = λiθ′
i
(t) a.e. ⇐⇒ ∀i ∈ {1, . . . , d}, θi = θ′i .

Overall, this condition allows to avoid pathological situations either when some process Ni is
not observed (strong external inhibition effects), or when there is a cyclical observation of points
(strong internal inhibition effects).

Finally, we present a solution for estimating the interaction network of a multivariate Hawkes
process. As it is common in real-data contexts, it is often unrealistic to assume that all functions
hij are non-null, meaning that all processes interact with each other. For this, we propose three
different data-driven techniques based on a thresholding approach inspired by principal compo-
nent analysis, and based on the construction of confidence intervals (Student and empirical). Our
results on synthetic data show a significant improvement with respect to other state-of-the-art
methods (Lemonnier et al. 2014; Bacry et al. 2020). In particular, when the interaction matrix
(αij)i,j=1:d contains null entries, we implement our post-hoc procedures to obtain an estimation
of the connectivity network before re-estimating all non-null entries on a reduced model. This
provides the best estimations, in the sense of the ℓ2 relative error, among the considered models,
as confirmed by our results on real-data concerning the analysis of neuronal activity.

1.3 Something is amiss: spectral methods for imperfect data

1.3.1 Context and related works
In the second part of the thesis, we turn the spotlight to a common issue in statistics: establishing
efficient estimation procedures when the observed data is noised in some sense.

In the context of point processes, a natural approach to define noised models is through the
operations of thinning, superposition and jittering.

1. The superposition of two point processes X and Y , usually noted X + Y is the point
process defined by the ordered union of event times (TX

k )k and (TY
k )k.

2. The thinning of a point process X corresponds to erasing some event times TX
k through

a random rule. When point are erased independently from each other with a common
probability 1− p, we talk about a p-thinning of process X.

3. The jittering of a point process consists in the random displacement of points.

The main interest of studying such alterations is to account for various measurement errors
in real-world data. The most commonly studied in the literature is jittering which tends to
appear when spatial imprecisions add a layer of uncertainty. Literature tends to focus on Poisson
processes (Antoniadis et al. 2006; Hohage et al. 2016; Bonnet et al. 2022b), with Hawkes processes
being studied in Trouleau et al. (2019) and Deutsch et al. (2020).

Thinning is often used to represent missing data but has been scarcely studied in the liter-
ature. Mei et al. (2019) propose a method to complete a sequence of times that have missing
points via a Long Short-Term Memory neural network model based on the Hawkes process.

The study of superposition allows to account for observations that are contaminated by points
originated from an external process, but are indistinguishable from those of the original process.
To our knowledge, the only work that studies this kind of noise is Lund et al. (2000), which
in fact tackles a general point process that is potentially noised by the three aforementioned
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mechanisms. Their work establishes an approach by maximising the conditional log-likelihood
dependent on the original process with an application to Hawkes processes. In practice and for
numerical reasons, they propose a local maximiser of this quantity in a small set of parameters
when having access to an estimation of the unnoised process.

Other imperfect data models have been presented in Linderman et al. (2014) where the
authors favour a Bayesian approach through latent variables to study processes with missing
marks, unobserved time intervals or unobserved subprocesses. The last work we mention here
is Cheysson et al. (2022), where the exact locations of the points of a Hawkes process are not
known. Instead, the only information available is the number of points that fall inside equally-
sized intervals. They leverage then the spectral theory of point processes and time series in order
to provide an estimation procedure that does not necessitate the precise location of event times.

Our contribution is to make use of the spectral theory of point processes, centered around the
Bartlett spectrum (Bartlett 1964) and the Whittle estimator (Whittle 1952), in order to propose
estimators for Hawkes processes altered by superposition (Chapter 5) and thinning (Chapter 6).
Another contribution is to leverage the obtained inference method to incorporate a subsampling
paradigm through thinning for small observation windows. The existing spectral theory for
Hawkes processes is limited to exciting interactions, so we restrict our models to this framework.

1.3.2 Spectral analysis for the inference of noisy Hawkes processes
Chapter 5 is dedicated to the study of the superposition of a Hawkes process H with exciting
kernel functions and an independent homogeneous Poisson process P with intensity λ0 > 0. We
consider their superposition, that we note N = H+P , and we assume that we have no knowledge
on the origin of each event time TN

k (either Hawkes or Poisson). The intensity function of this
resulting process is intractable and any method based on it is therefore inaccessible.

As mentioned previously, we take inspiration from Cheysson et al. (2022) in order to leverage
the spectral approach of point processes to circumvent this issue. The Bartlett spectrum ΓN of
N is a measure defined by the means of the Fourier transform of its reduced covariance measure.
When this measure is absolutely continuous, its density is noted fN and often called the spectral
density of the process. We can establish an estimation procedure of a parametric model for fN
(with parameter θ ∈ Θ) through the periodogram function IT . For an observation (TN

k )k≥1 in
[0, T ], the periodogram is defined, for any ω ∈ R, as:

IT (ω) =
1

T

N(T )∑
k=1

N(T )∑
l=1

e−2πiω(TN
k −TN

l ) . (1.9)

Asymptotically, this quantity follows an exponential distribution with mean fN (ω) and so it is
possible to define the maximum spectral log-likelihood estimator θ̂ as:

θ̂ ∈ argmaxθ∈Θ − 1

T

M∑
k=1

(
log
(
fNθ (ωk)

)
+
IT (ωk)

fNθ (ωk)

)
, (1.10)

where ωk = k/T for k ∈ {1, . . . ,M}. What makes this quantity so useful in our context is that
it can be exactly computed without any information on the source of event times (TN

k )k.
Our first result establishes the expression of the spectral density function for the superposition

of two independent point processes as exhibited in Proposition 1.3.1.

Proposition 1.3.1. Let X and Y be two independent and stationary point processes, admitting
respective spectral densities fX and fY .
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Then N = X + Y admits a spectral density function fN and

fN = fX + fY . (1.11)

As the spectral density of a Hawkes process is explicit (Daley et al. 2003, Example 8.2(e)),
we obtain the general form of the spectral density of our noisy Hawkes process, which in turn
makes it possible to establish an estimation procedure by maximising the spectral log-likelihood.

Our main contribution in the univariate setting is to establish conditions for the identifiability
of fN for different parametrisations of the kernel function h. The first result is related to the
classical exponential kernel. We show that the model is identifiable if and only if one of the four
parameters (three for the Hawkes process and one for the Poisson process) is fixed, even though
the distribution of N is uniquely determined without this constraint. Furthermore, we prove that
the noisy Hawkes process with a uniform kernel function defines an identifiable spectral model.

In the multivariate case, all tools from spectral theory exist and results are easily extended
concerning the estimation procedure. Our contributions specifically concern the bivariate expo-
nential Hawkes process noised by a bivariate Poisson process with common parameter λ0. We
present sufficient conditions on the interaction matrix (αij)1≤i,j≤2 that characterise either the
identifiability or non-identifiability of the corresponding statistical model.

Our work is concluded by a numerical study in both the univariate and bivariate cases when
identifiability conditions are verified. We show in both cases that our estimators perform partic-
ularly well, especially for processes with strong excitation effects and as the observation horizon
T increases. Our final contribution is to propose an ad-hoc procedure in the bivariate case
that allows to determine the support of the interaction matrix by considering the empirical 5%
quantiles of a sample of estimations, which in turn enhances the performance of our methods.

1.3.3 A numerical exploration of thinned Hawkes processes through
spectral theory

Finally, Chapter 6 turns to the analysis of thinning for point processes. Let Hp be a process
issued from thinning a univariate Hawkes process with a probability 1− p of erasing each point
Tk, for k ∈ Z. As previously mentioned, any method based on the conditional intensity function
is unavailable, so we turn to spectral theory.

All the tools presented in the previous subsection can still be implemented here, in particular
the expression of the periodogram (Equation (1.9)) remains unchanged. As a consequence, it
can still be exactly computed even though we do not observe all points of the original process.
In order to implement an inference procedure as defined by Equation (1.10), we need to obtain
an expression of the p-thinned process Hp. This is presented in Proposition 1.3.2.

Proposition 1.3.2. Let H be a stationary point process admitting a spectral density function
fH and let m1 = E[λ(0)] be its average intensity. For any p ∈ (0, 1], let Hp be a p-thinning of
H.

Then, Hp admits a spectral density function, denoted fHp , such that for any ω ∈ R:

fHp(ω) = p2fH(ω) + p(1− p)m1 . (1.12)

This result is obtained by leveraging the spectral theory of marked point processes as pre-
sented in Brémaud et al. (2005).

We focus our study on the exponential kernel function and we prove that the derived sta-
tistical model is identifiable if and only if one parameter is fixed, similar to the aforementioned
superposition scenario. We present numerical results under this condition by fixing the value
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of the thinning parameter p. In particular, we show that our estimation method is robust with
respect to the level of thinning, with remarkable results when enough event times are available
for inference.

Our last contribution in this work is to make use of the thinning operation as a subsampling
procedure when a single observation of H is available in a small window of time. The use
of subsampling for point processes has been done previously in the literature (Møller et al.
2003; Cronie et al. 2024) in order to improve estimation procedures. In our case, we focus
on enhancing the quality of our spectral estimations by combining an ℓ2 penalisation with an
averaged estimator obtained by thinning the unique observation ofH. We show that our proposed
procedure provides in general the best estimations, in the sense of the relative ℓ2 error, when
compared to another subsampling procedure and displays a substantial improvement by reducing
the high bias observed for the non-penalised estimator.

1.4 Outline of the manuscript

Chapter 2 proposes a succinct presentation of point processes theory, from a random measure
approach, and the formalism of Hawkes processes.

The first part of this thesis concerns the study of the inhibition.

• Chapter 3 presents a parametric estimation method for univariate Hawkes processes that
accounts for both self-exciting or self-inhibiting interactions. This is a joint work with Anna
Bonnet and Maxime Sangnier, published in Statistics and Probability Letters (Bonnet et al.
2021).

Code is freely available at https://github.com/migmtz/hawkes-inhibition-expon

• Chapter 4 presents a parametric estimation method for multivariate exponential Hawkes
processes with exciting and inhibiting interactions along with a model selection procedure.
This is a joint work with Anna Bonnet and Maxime Sangnier, published in Statistics and
Computing (Bonnet et al. 2023).

Code is freely available at https://github.com/migmtz/multivariate-hawkes-inhibition

The second part consists in the study of imperfect observations of a Hawkes process realisa-
tion, similar to missing data formulations.

• Chapter 5 presents a parametric estimation method for exciting Hawkes processes whose
event times are noised by those of a homogenenous point process, leveraging point process
spectral theory. This is a joint work with Anna Bonnet, Felix Cheysson and Maxime
Sangnier and has been submitted for publication (Bonnet et al. 2024).

Code is available at https://github.com/migmtz/noisy-hawkes-process

• Chapter 6 presents the analysis of an inference method for thinned univariate Hawkes pro-
cesses through spectral theory. Additionally, it presents an improvement of ℓ2 penalisation
through thinning subsampling for the spectral estimator.

This chapter is an ongoing joint work with Felix Cheysson.

https://github.com/migmtz/hawkes-inhibition-expon
https://github.com/migmtz/multivariate-hawkes-inhibition
https://github.com/migmtz/noisy-hawkes-process
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2.1 Introduction

Point processes are a fundamental concept in stochastic modelling, providing a framework for
analysing events that occur randomly over time. Traditionally, a temporal point process is
presented through the concept of an ordered collection of random variables in the real line, each
one representing the occurrence of an event. A standard approach to study point processes
is by defining random measures, which are random variables with realisations on the space of
boundedly finite measures. In particular, this framework gives access to many results from set
theory and measure theory as largely shown in the literature (Cox et al. 1980; Baddeley 2006;
Daley et al. 2008; Baccelli et al. 2020).

16
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In this chapter, we present a succinct introduction to these concepts in order to present the
submodel of past-dependent point processes: the Hawkes model (Hawkes 1971). Our goal here is
twofold: the first one is to introduce numerous notations and definitions that are used throughout
this manuscript, serving as a general reference for further chapters. The second is to present a
short review of the original self-exciting Hawkes processes and some numerical procedures from
the literature.

We introduce the concept of temporal point processes through random measure theory in
Section 2.2 with a particular interest on the concept of conditional intensity functions. With this
background, we formally introduce the univariate self-exciting Hawkes processes in Section 2.3
with the two classical extensions to multivariate and non-linear settings, the latter being often
used to model inhibition effects. We follow up with a general presentation of some classic inference
methods in Section 2.4 and we conclude with Section 2.5 by presenting two methods of simulation
that are commonly used in the context of Hawkes processes.

2.2 Random measures and point processes

2.2.1 Random measures
Let X ⊆ R denote either the real half-line R≥0 or the real line R and BX be the Borel σ-algebra
of X .

Definition 2.2.1. A measure ν on X is said to be boundedly finite if for any bounded B ∈ BX ,
ν(B) < +∞ and we define MX as the set of boundedly finite measures on X .

For MX , we may obtain Borel σ-algebras generated by the mappings ν 7→ ν(B), for all
B ∈ BX , that we note B(MX ).

Let (Ω,F ,P) be a probability space.

Definition 2.2.2 (Random measure). A random measure ξ on X is a measurable mapping from
Ω into MX . The distribution of a random measure ξ is the probability measure induced by the
probability measure P.

An equivalent definition of a random measure is obtained through the following result.

Proposition 2.2.1. (Baccelli et al. 2020, Proposition 1.1.7)
For a mapping ξ : (Ω,F) → (MX ,B(MX )), we define for any B ∈ BX the mapping ξ(B) :

(Ω,F) → (X ,BX ) as:
(ξ(B)) (ω) = (ξ(ω))(B) .

Then, ξ is a random measure if and only if, for all B ∈ BX , ξ(B) is measurable.

With this result, it means that we can work with a random measure ξ in two ways:

• For any ω ∈ Ω, a realisation ξ(ω) is a measure on X .

• For any B ∈ BX , ξ(B) is a random variable on X . Furthermore, {ξ(B)}B∈BX is a stochastic
process.

In practice, as with other random variables we tend to omit the term ω when working with
random measures and using ξ either as a measure or random variable is to be understood by the
context. Another direct result from Proposition 2.2.1 is that, for any finite sequence (Bk)k=1:K

of Borel sets, we can define the random vector:

(ξ(B1), . . . , ξ(BK)) .
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It turns out that a characterisation of any random measure is given by the distribution of all of
these vectors.

Proposition 2.2.2. (Daley et al. 2008, Corollary 9.2.IV)
Let ξ be a random measure on X . The finite-dimensional distributions of ξ are the probability

distribution of the vectors (ξ(B1), . . . , ξ(BK)) for all integers K ≥ 1 and all sequences of Borel
sets (Bk)k=1:K .

The distribution of ξ is fully given by its finite-dimensional distributions.

With this result, a way of defining any random measure is by defining its finite-dimensional
distributions. However, not any set of finite-dimensional distributions corresponds to those of
a random measure, but a set of necessary and sufficient conditions is proposed in Daley et al.
(2008, Conditions 9.2.V-VI), namely Kolmogorov extension theorem conditions and additivity
and continuity conditions. Finally, let us introduce the notion of stationarity. For any B ∈ BX ,
for any x ∈ X , we define B + x as the set:

B + x = {b+ x | b ∈ B} .

Definition 2.2.3. A random measure ξ is said to be stationary if for any B ∈ BX and for any
x ∈ X , N(B) and N(B + x) follow the same distribution.

2.2.2 Point processes
Let us now turn to the study of point processes. For this, we need the definition of a counting
measure.

Definition 2.2.4. A measure ν on X is a counting measure if for any B ∈ BX , ν(B) ∈ N∪{+∞}.
We note NX the set of all boundedly finite counting measures on X .

As done previously, we can equip the space NX with a Borel σ-algebra B(NX ) generated by
the mappings ν 7→ ν(B), for all B ∈ BX .

Definition 2.2.5 (Point processes). A point process N on X is a measurable mapping from a
(Ω,F ,P) into (NX ,B(NX )).

Intuitively, a point process N is a random measure (Baccelli et al. 2020, Corollary 1.6.4.)
such that, for any ω ∈ Ω, the realisation N(ω) is a counting measure and so in particular all
previous results from random measures hold for a point process. For instance, for any B ∈ BX ,
N(B) will denote the measure of B by N , which allows us to introduce the definition of a simple
point process.

Definition 2.2.6. A point process N is simple if, for any x ∈ X , N({x}) ∈ {0, 1}, a.s.

It is very common in the literature to work uniquely with simple point processes, but before
further discussing this, let us exhibit the following result from the theory of point processes.

Theorem 2.2.1. (Last et al. 2017, Corollary 6.5)
Let N be a point process on X and let δx be the Dirac measure on x, for any x ∈ X . There

exists a random variable κ ∈ N ∪ {+∞} and a sequence of random variables (T1, T2, . . .) such
that:

N =

κ∑
k=1

δTk
, a.s.

We refer to the variables Tk as the event times or points of process N .
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This theorem reunites the definition of a point process as a random measure with other
formalisms of point processes as random points observed in a space X . A simple point process
is then a point process without coinciding points, in other words, for any i ̸= j, Ti ̸= Tj almost
surely. From now on, we will assume that all point processes are simple.

Let us now turn to some particularities of working in a temporal setting. As X is a well-
ordered set, it is practical to order the event times of N . The indexation of the sequence of event
times slightly differs whether we work on R≥0 or R. Unlike Theorem 2.2.1 may suggest, it is
a common adopted convention, when working on the entire real line, that the event times are
indexed by Z such that

. . . < T−2 < T−1 < T0 ≤ 0 < T1 < T2 < . . . .

This way, positive indices will always denote points after the origin of time t = 0. Another usual
convention is to denote N(t) = N([0, t]) the number of points in the interval [0, t] especially used
in inference contexts. This allows also to see (N(t))t∈X as a right-continuous stochastic process.

2.2.3 Integrals and moment measures
We can define the stochastic integral of a measurable function f : X → R≥0 against a point
process N with event times (Tk)k∈Z as:∫

X
f(t)N(dt) =

∑
k∈Z

f(Tk) ,

which is similar to the Lebesgue-Stieljes integral. We can see that the integral defined this way
is a random variable and by taking f = 1B for any B ∈ BX , we can retrieve the measure of B:∫

X
1B(t)N(dt) =

∑
k∈Z

1Tk∈B = N(B) .

Let us now define the moment measures of N .

Definition 2.2.7. Let N be a point process. Whenever it exists, we note Mk the k-th moment
measure of N defined, for any (B1, . . . , Bk) ∈ Bk

X , as:

Mk(B1, . . . , Bk) = E[N(B1) . . . N(Bk)] .

In particular, the first moment measure M1 is also known as the intensity measure of N , also
denoted Λ.

With the intensity measure, we are able to introduce the most classical point process, the
Poisson process.

Definition 2.2.8. Let Λ be a measure on X absolutely continuous with respect to the Lebesgue
measure ℓ and let λ : X → R≥0 be its Radon-Nikodym derivative.

A point process N is a Poisson process with intensity function λ if it verifies the following
conditions:

1. For any B ∈ BX , N(B) follows a Poisson distribution with parameter Λ(B) =
∫
B
λ(t) dt.

2. For any integer K and any set of disjoint Borel sets (Bk)k=1:K , the variables (N(Bk))k=1:K

are independent.
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If λ is a constant function, then N is called a homogeneous Poisson process.

The Poisson process is sometimes referred to as a process with independent increments be-
cause of the second property. In particular, when the intensity function λ is constant, we can
further characterise the process by its inter-arrival times.

Theorem 2.2.2. (Last et al. 2017, Theorem 7.2)
N is a homogeneous Poisson process with intensity λ > 0 if and only if the inter-arrival times

(Tk+1 − Tk)k∈Z are i.i.d, all following an exponential distribution with parameter λ.

2.2.4 The conditional intensity function
In the previous subsection, we defined the Poisson process through its intensity function, which
allows to account for different time-dependent dynamics. The concept that will allow us to
properly introduce the Hawkes process is the conditional intensity function. For this, let us note
Ht the history of a point process N up to the instant t ∈ X . Ht is the σ-algebra generated by
the event times Tk:

Ht = σ({Tk | k ∈ Z, Tk ≤ t}) .

Definition 2.2.9. Let N be a simple point process on X , and (Ht)t the histories of N . The
conditional intensity function λ of N is defined, for any t ∈ X , as:

λ(t | Ht) = lim
h→0

E[N([t, t+ h]) | Ht]

h
. (2.1)

Let us remark that by Proposition 7.2.IV in Daley et al. (2003), a point process is entirely
determined by its conditional intensity function. In general, the conditional intensity function λ
is a random variable for each t ∈ X as it is expressed through a conditional expectation. However,
if λ is a deterministic function, then it coincides with the intensity function of a Poisson process
as given in Definition 2.2.8, which justifies keeping the same notation λ.

It is a common practice to omit the term Ht in Equation (2.1) as a conditional intensity is
usually understood as having access to the entire past history (unless it is to avoid ambiguity).
Intuitively λ quantifies the instantaneous probability of observing a point on an interval of in-
finitesimal size h. As N is a simple point process, the expectation in Equation (2.2.8) corresponds
to P(N([t, t+ h])) = 1 for h small enough. Another common interpretation (see Hawkes (1971),
for an example) of the conditional intensity function for simple point processes is through the
following properties: 

P(N([t, t+ h]) = 1) = λ(t)h+ o(h)

P(N([t, t+ h]) = 0) = 1− λ(t)h+ o(h)

P(N([t, t+ h]) ≥ 2) = o(h) .

A very formal presentation of the conditional intensity function can be found in Daley et al.
(2003, Chapter 7) through the concept of Janossy densities. In a nutshell, given a number K of
observed points in a set B, the Janossy densities describe the probability distributions of points
(Tk)k=1:K inside B.

Definition 2.2.10. Let N be a simple point process and λ its conditional intensity function.
The compensator Λ of N is the random measure defined, for any B ∈ BX as:

Λ(B) =

∫
B

λ(t) dt .
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In particular, the expectation of Λ is the first-order moment measure of N . If N is stationary,
then this measure is a constant multiple of the Lebesgue measure ℓ.

Again, the concept of compensator coincides with the intensity measure in Definition 2.2.8
whenever λ is deterministic. Similarly to the notation of point processes, we note Λ(t) = Λ([0, t])
for any t ∈ X . The compensator is a highly studied quantity for point processes defined through
conditional intensity functions. An important result concerning Λ is the time change theorem:

Theorem 2.2.3. (Daley et al. 2003, Theorem 7.4.IV)
Let (Xk)k∈Z be an a.s. increasing sequence of random variables in X and Ft = σ({Xk | k ∈

Z, Xk ≤ t}), for all t ∈ R. Let λ̄(· | F·) be a non-negative function such that, for all t ∈ R,
λ̄(t | Ft) is Ft-measurable and let Λ̄ be defined, for any t ∈ R, as:

Λ̄(t) =

∫ t

−∞
λ̄(u | Fu) du .

Then, the process
∑

k∈Z δXk
is a point process with conditional intensity function λ̄ if and

only if
∑

k∈Z δΛ̄(Xk) is a homogeneous Poisson process with unit intensity.

It is then possible to rescale the event times of any observed point process N in order to
obtain a realisation of a homogeneous Poisson process. This is a very useful result in order to
establish goodness-of-fit procedures for point processes when an estimation Λ̂ of Λ is available.
For example, by transforming the observed event times (Tk)k with Λ̂, we can then test whether
the inter-arrival times (Λ̂(Tk+1)− Λ̂(Tk))k are exponentially distributed (see Theorem 2.2.2).

Lastly, we conclude this section by introducing the expression of the likelihood.

Proposition 2.2.3. (Daley et al. 2003, Theorem 7.2.III)
Let N be a point process with conditional intensity function λ. Let (Tk)k=1:N(T ) be the reali-

sation of N in the interval [0, T ].
Then the likelihood LT of N reads:

LT =

N(T )∏
k=1

λ(T−
k )

 e−Λ(T ) , (2.2)

where λ(T−
k ) = limt→T−

k
(λ(t)).

The log-likelihood of N is:

ℓT =

N(T )∑
k=1

log(λ(T−
k ))− Λ(T ) . (2.3)

The likelihood can be introduced by means of the Janossy densities. Let us note that, in the
case of point processes on the entire real line R, it is necessary to know all the points Tk ≤ T
in order to compute the likelihood, which is usually unavailable. In practice, it is often assumed
that no points occured in (−∞, 0) and so an adapted version of λ is used in Equation 2.2 (see
Ogata (1978)).
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2.3 Hawkes process

2.3.1 The self-exciting Hawkes process
The Hawkes process, as introduced in Hawkes (1971), is defined as a point process in R as follows:

Definition 2.3.1. Let µ > 0 and h : R≥0 → R≥0 be a measurable function such that

∥h∥1 =

∫ +∞

0

|h(t)|dt < 1 .

A Hawkes process N is a point process on R defined by the conditional intensity function:

∀t ∈ R, λ(t) = µ+

∫ t

−∞
h(t− s)N(ds) . (2.4)

µ is known as the baseline intensity and h as the interaction or kernel function.

This process was initially referred to as a self-exciting point process due to the integral in
Equation (2.4) that represents the positive contribution of all past points up to time t to the
intensity function λ. Let us recall that:∫ t

−∞
h(t− s)N(ds) =

∑
Tk≤t

h(t− Tk) ,

and so each event time Tk increases the baseline intensity by an additive factor of h(t − Tk),
hence the self-excitation effect.

The condition ∫ +∞

0

h(t) dt < 1 ,

for the interaction function ensures that N is boundedly finite a.s. and so that N is a point
process. Another result of this condition is that limt→+∞ h(t) = 0, meaning that the effect of
any point Tk dissipates the further they are in the past.

Another implication of this condition is that a Hawkes process defined in R is a stationary
point process (Hawkes et al. 1974, Lemma 1) which allows to establish the following result.

Proposition 2.3.1. (Hawkes 1971, Equation (9)) Let N be a stationary Hawkes process. Then
the average intensity of N reads:

∀t ∈ R, E[λ(t)] =
µ

1− ∥h∥1
.

The stationarity of process N is verified for processes only in R and so this result does not
hold for a process in R≥0. On the one hand, it is often more practical for theoretical reasons to
work in R, as stationarity tends to facilitate establishing certain results (see Hawkes (1971) for
example in the context of spectral theory). On the other hand, working with a process in R≥0

is often preferred for application purposes, as it is unrealistic to suppose that the practitioner
has access to an infinite number of points in the past before t = 0. To define such a process, it
suffices to replace the lower bound in the integral of Equation (2.4) by 0.
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2.3.2 The multivariate Hawkes process
The multivariate version of a self-exciting Hawkes process was introduced in Hawkes (1971) as
follows.

Definition 2.3.2. A multivariate Hawkes process N = (N1, . . . , Nd) of dimension d is defined
by d point processes (Ni)i=1:d. For each integer i, we note (T i

k)k the event times of process Ni

and its conditional intensity function λi reads:

λi(t) = µi +

d∑
j=1

∫ t

−∞
hij(t− s)Nj(ds) = µi +

d∑
j=1

∑
T j
k≤t

hij(t− T j
k ) .

For any integers i, j, µi > 0 is the baseline intensity of Ni and hij : R≥0 → R≥0 is a measurable
function.

For a multivariate Hawkes process, each intensity function λi is influenced by every point
T j
k of process Nj , for all integers j. Function hij represents the influence of a point from Nj to

process Ni. We define the matrix S = (∥hij∥1)1≥i,j≥d and a condition for all N i to be proper
point processes is to control the spectral radius ρ(S) < 1 (Bacry et al. 2015). This condition
ensures again the stationarity of all processes when defined in R.

When d = 1, we retrieve the original expression of a Hawkes process from Definition 2.3.1
and so we talk about a univariate Hawkes process. Defining a multivariate Hawkes process as a
tuple is the more common formulation for any kind of point process, but it is sometimes practical
to consider process N as the superposition of all subprocesses Ni. N is then characterised by
the ordered union of all event times (T i

k)k∈Z for all integers i, forming a single point process in
R with event times (T(k)) and conditional intensity function:

λ(t) =

d∑
i=1

λi(t) .

This perspective allows to extend all results from general point process theory to multivariate
processes, including inference methods.

2.3.3 Non-linear Hawkes processes
A more general formulation of a past-dependent point process inspired by the Hawkes process
was proposed in Brémaud et al. 1996 and known as the non-linear Hawkes process.

Definition 2.3.3. The univariate non-linear Hawkes process N on R is defined by the conditional
intensity function:

λ(t) = Φ

(
µ+

∫ t

−∞
h(t− s)N(ds)

)
, (2.5)

where µ > 0 and Φ : R → R≥0 and h : R≥0 → R are two measurable functions. Φ is known as
the activation function and h as the interaction or kernel function.

The usual formulation of the self-exciting Hawkes process in Definition 2.3.1 can be retrieved
by taking the identity function Φ: x 7→ x and by adding a positivity constraint on h. Because of
this, it is often referred to as the linear Hawkes process.

By allowing h to take negative values in Equation (2.5), the non-linear Hawkes process can
model an inhibiting effect between points where each point decreases the chances of other points
occuring, in opposition to the excitation effect.
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To guarantee the existence of such a process, either Φ needs to be upper-bounded or Φ to be
L-lipschitz, for L > 0, such that:

L∥h+∥1 < 1 ,

where (·)+ : x 7→ max(0, x) denotes the positive part function.
A multivariate version of this process can be defined as for the classical Hawkes process in

Definition 2.3.2. In this setting, existence can be retrieved either by upper-boundness of Φ or
by imposing that the spectral radius of matrix S+ = (L∥h+ij∥1)1≥i,j≥d is stricly smaller than 1
(Sulem et al. 2024, Lemma 2.1). For instance, if Φ is the positive part function, this condition
can be retrieved by upper-bounding the intensity function by the intensity of the linear process
N+ with interaction functions (h+ij)i,j , for all integers i, j (Deutsch et al. 2024, Theorem 2).

This function, often called ReLU activation, is the most common choice in the literature for
the non-linear function (Lemonnier et al. 2014; Lu et al. 2018; Costa et al. 2020), with other
examples include clipped exponential (Chornoboy et al. 1988; Carstensen et al. 2010), sigmoid
(Menon et al. 2018) and softplus functions (Mei et al. 2017). This model of inhibiting interactions
for the Hawkes process is often referred to as additive inhibition and other works in the literature
have proposed alternative versions such as the self-limiting Hawkes process with a multiplicative
exponential term dependent on the number of points in a moving interval (Olinde et al. 2020),
and the mean-field Hawkes process with multiplicative inhibition (Duval et al. 2022).

2.4 Inference for Hawkes processes

In this section we will review some classical methods for the estimation of the baseline intensity µ
and interaction function h of the linear Hawkes process N . The literature on inference procedures
in the non-linear setting is scarcer and some will be mentioned in Section 2.4.3.

2.4.1 MLE for Hawkes process with exponential kernel
A common method is maximisation of the log-likelihood:

ℓT =

N(T )∑
k=1

log(λ(T−
k ))− Λ(T ) ,

as shown in Ozaki (1979). A multivariate version of it is presented in Embrechts et al. (2011) and
Guo et al. (2018) with expected mathematical properties including consistency and asymptotic
normality (Simon et al. 2017), mainly developed in parametric settings.

We present here the implementation of the maximum likelihood estimation method for uni-
variate self-exciting Hawkes processes. Let N be a Hawkes process in R≥0 and we assume that
the function h is parametrised by an exponential distribution such that:

h(t) = αe−βt , for t ≥ 0,

with α > 0 and β > 0. The existence condition in Definition 2.3.1 reads:

∥h∥1 =
α

β
< 1 ,

and so we assume that α < β. By defining the following parametric model:

P =
{
λθ | θ = (µ, α, β) ∈ R3

≥0, α < β
}
,
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the log-likelihood (2.3) becomes a function of parameter θ:

ℓT (θ) =

N(T )∑
k=1

log(λθ(T
−
k ))− Λθ(T ) ,

with Λθ the compensator of λθ.
The choice of the exponential kernel function for N implies that the intensity λ is Markovian

in the sense that in each interval [Tk, Tk+1) the expression is solely dependent on the value of
λ(Tk). For any integer k ≥ 1 and any t ∈ [Tk, Tk+1), the intensity reads:

λ(t) = µ+

∫ +∞

0

αe−β(t−s)N(ds) = µ+

k∑
j=1

αe−β(t−Tj)

= µ+ e−β(t−Tk)
k∑

j=1

αe−β(Tk−Tj)

= µ+ e−β(t−Tk) (λ(Tk)− µ) . (2.6)

We can then easily integrate λ in [Tk, Tk+1):∫ Tk+1

Tk

λ(t) dt = µ(Tk+1 − Tk) + (λ(Tk)− µ)

∫ Tk+1

Tk

e−β(t−Tk) dt

= µ(Tk+1 − Tk) + (λ(Tk)− µ)β−1(1− e−β(Tk+1−Tk)) .

Then, for any interval [0, T ], the compensator Λ can be computed piecewise:

Λ(T ) =

∫ T

0

λ(t) dt

=

∫ T1

0

µdt+

N(T )−1∑
k=1

∫ Tk+1

Tk

λ(t) dt+

∫ T

TN(T )

λ(t) dt

= µT + β−1

N(T )−1∑
k=1

(λ(Tk)− µ)(1− e−β(Tk+1−Tk)) + (λ(TN(T ))− µ)(1− e−β(T−Tk))

 .

The consequence of this expression is that the terms λ(Tk) (and λ(T−
k )) can be computed recur-

sively by Equation 2.6 and so Λ has a computational complexity of O(N(T )). The log-likelihood
also has a complexity of O(N(T )) and can be efficiently computed as described in Algorithm 1:

In practice, we obtain an estimation θ̂ of a parameter θ = (µ, α, β) by maximising the log-
likelihood.

Other methods implemented in parametric settings are the method of moments (Da Fonseca
et al. 2013), by leveraging the spectral theory of point processes to maximise a spectral version
of the log-likelihood (Adamopoulos 1976) or through an Expectation-Maximisation procedure to
estimate the branching structure of the Hawkes process (Veen et al. 2008).
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Algorithm 1: Computation of ℓT
Input Parameters µ, α, β, time horizon T and sequence of event times (Tk)k=1:N(T );
Initialization Initialize ℓT = log(µ)− µT , λ(T1) = µ+ α;
for k ≥ 1 do

Compute λ(T−
k+1) = µ+ (λ(Tk)− µ)e−β(Tk+1−Tk);

Update ℓT = ℓT + log(λ(T−
k+1))− β−1(λ(Tk)− µ)(1− e−β(Tk+1−Tk));

Compute λ(Tk+1) = λ(T−
k+1) + α;

end
Update ℓT = ℓT − β−1(λ(Tk)− µ)(1− e−β(T−Tk));
return Log-likelihood ℓT

2.4.2 Least-squares minimisation
Inference procedures in non-parametric settings tend to be based on the minimisation of a least-
squares contrast. Let us assume that we want to estimate an intensity function λ in an interval
[l, L] through a function λ̂. We define the squared error of λ̂ as:

∥λ̂− λ∥22 =

∫ L

l

(λ̂(t)− λ(t))2 dt (2.7)

=

∫ L

l

λ̂2(t) dt− 2

∫ L

l

λ̂(t)λ(t) dt+

∫ L

l

λ2(t) dt . (2.8)

In order to minimise this quantity with respect to λ̂, we need to remove the dependency on λ as
this quantity is unavailable in estimation contexts. We may remark that the last term can be
completely ignored as it does not depend on λ̂ but the middle term has to be treated differently.

As done in Reynaud-Bouret et al. (2014), we can leverage the fact that a valid approximation
of λ(t) dt is N(t). This is justified by the fact that locally E[N(t)] = E[Λ(t)] and that λ is the
Stieltjes-Lebesgue derivative of Λ. We can then minimise the following expression:∫ L

l

λ̂2(t) dt− 2

∫ L

l

λ̂(t)N(dt) ,

for an observation of process N .
Non-parametric approaches to minimise this quantity tend to approximate the interaction

function h by histograms (Lemonnier et al. 2014; Reynaud-Bouret et al. 2014) or by using
autoregressive models (Kirchner 2017).

Other non-parametric methods include solving Wiener-Hopf equations (Bacry et al. 2016),
optimising a penalised log-likelihood through an EM algorithm (Lewis et al. 2011) and fitting
second and third-order cumulants (Achab et al. 2016).

2.4.3 A Bayesian estimation approach
The Bayesian approach for the inference of Hawkes processes consists in estimating the posterior
distribution for the parameters of the intensity function. The method we present here follows
the procedure by Rasmussen (2013) which leverages the expression of the likelihood. We present
an application for the exponential kernel function h(·) = αe−β·.

Let θ = (µ, α, β) ∼ Π be a random vector of parameters with density π and, conditionally on
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θ, let N be a linear Hawkes process with intensity λθ parametrised by θ. We define the likelihood
LT (Equation (2.2)) of N , in a time window [0, T ] and for a history HT , as:

LT (θ) =

N(T )∏
k=1

λθ(T
−
k )

 e−Λθ(T ) .

By the Bayes rule, the posterior distribution of θ conditional on the observation of N in [0, T ]
admits a density π(· | HT ) proportional to the prior π and the likelihood LT :

π(θ | HT ) ∝ π(θ)LT (θ) .

An estimator θ̂ = E[θ | HT ] can be approximated by sampling the posterior distribution of
θ | HT , which has the advantage of providing credibility intervals.

For this, we implement a Metropolis-Hastings algorithm with multivariate isotropic normal
distribution as the proposition kernel. Let us illustrate the principle with the baseline intensity
µ: for a current parameter µl, a candidate µ̃l | µl ∼ N (µl, σ

2) is sampled and the acceptance
ratio reads:

Hµ =
π(µ̃l, α, β)

π(µl, α, β)

N(T )∏
k=1

λ(µ̃l,α,β)(T
−
k )

λ(µl,α,β)(T
−
k )

 e−(µ̃l−µl)T .

This allows us to obtain approximatively a sample according to the posterior distribution and
provides an estimation θ̂ by averaging.

Further works in Bayesian contexts in the multivariate setting include Blundell et al. (2012) for
Hawkes processes for the study of a social interaction graph, Donnet et al. (2020) with theoretical
results concerning the concentration rates of posterior distributions. These methods have been
recently adapted to include inhibition through non-linear Hawkes processes. In Deutsch et al.
(2024), the authors propose to compute the log-likelihood in a multivariate parametric setting
with a time-dependent baseline µ. They provide an exact computation of the log-likelihood for
exponential kernels with shared decaying parameters (βij = β ∈ R), and an approximation of
it by a Simpson’s rule suited for more general cases. Additionally, the model is reparametrised
with respect to the expected total number of offsprings in order to provide normal priors better
adapted for higher dimensional processes. A non-parametric estimation method is proposed in
Sulem et al. (2024) which derives posterior concentration rates and in Sulem et al. (2023) through
a variational Bayes procedure with a sparsity-inducing paradigm.

2.5 Simulation

2.5.1 Ogata’s thinning simulation
The most classic method to simulate point processes with an intensity function λ is obtained
through a rejection algorithm. An important condition to implement this method is for the
intensity function to be upper-bounded by a constant λ⋆. We may then simulate N by first
simulating a homogeneous Poisson process with intensity λ⋆ and then keeping each point with
probability λ(t)/λ⋆.

In general, it is not possible to find an upper bound for the intensity of a Hawkes process.
Additionally, the intensity function is dependent on each simulated point so each time a point
appears, the intensity has to be updated. In order to account for these particularities of a Hawkes
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process, one of the most used methods is Ogata’s thinning algorithm (Ogata 1981). To simulate
the points of a process N in a window of time [0, T ] (with the convention that T0 = 0), we
implement the following paradigm.

1. Assume that event time Tk < T has been simulated.

2. Compute an upper bound λ⋆ of t 7→ λ(t | HTk
) on the interval [Tk, T ].

3. Simulate a candidate point tcand according to an exponential distribution with mean 1/λ⋆.

4. Compute the intensity λ(tcand).

5. Accept the candidate with probability λ(tcand)/λ⋆.

This algorithm generalises the case when a global upper bound is known by allowing for upper
bounds to be local instead.

For the simulation of a Hawkes process, we recall that the interaction function h is such that:

∥h∥1 < 1 ,

so in particular it is upper-bounded and attains its upper bound noted ∥h∥∞. We can then
sequentially determine a local upper bound. Without any other constraints on h, for a set of
simulated event times (T1, . . . , Tk), a local upper bound for t 7→ λ(t | HTk

) on the interval
[Tk,+∞] (assuming no other points) is given by:

λ⋆ = µ+ k∥h∥∞ .

This is clearly a very rough bound and can be easily improved under certain conditions, for
example if h is a decreasing function. In this case, then λ is piecewise decreasing and so the
upper bound becomes:

λ⋆ = λ(Tk) + h(0) .

Choosing a smaller upper-bound improves the simulation time by reducing the overall number
of candidates and rejections.

Algorithm 2 displays the adaptation of Ogata’s thinning algorithm to Hawkes processes for
a non-increasing interaction function.

2.5.2 Simulation through branching theory
Another simulation algorithm is based on what is called the branching structure of a Hawkes
process. By Definition 2.3.1, the Hawkes process can be seen as a branching Poisson process as
described below.

1. Let Nc be a homogeneous Poisson process with intensity µ. All event times (T c
k )k∈Z are

known as parents.

2. Each parent T c
k generates a subsidiary process of descendants Ck of event times as follows.

• A first generation Ck,1 is generated as an inhomogenous Poisson process with intensity
h(· − T c

k ).

• Each child point t in Ck,1 generates a new generation Ck,2 inhomogenous Poisson
process with intensity h(· − t).
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Algorithm 2: Thinning algorithm for monotone self-exciting Hawkes process.
Input Parameters µ, h a non-increasing function, and a stopping criteria (end-time T or
maximal number of jumps Nmax);

Initialization Initialize λk = µ, tk = 0 and list of times T = ∅;
while Stopping criteria not fulfilled do

Set λ⋆ = λk;
Generate candidate time tcand = tk − log(U1)

λ⋆ , U1 ∼ U([0, 1]);
Compute intensity λk = λ(tcand) using sequence of times T ;
Sample U1 ∼ U([0, 1]);
if U1 ≤ λk

λ⋆ then
Add tcand to sequence of times T ;
Update λk = λk + h(0);

end
Set tk = tcand;

end
return the sequence of jumps T .

• This is repeated for each generated point until no new points are born. Ck is formed
by the union of all points in each subprocess Ck,j .

3. The process N composed of the ordered union of all parents (T c
k )k and all points in every

subprocess (Ck)k is a Hawkes process.

Branching Poisson processes were introduced in Bartlett (1963) and Lewis (1964) and allow
to leverage the theory of branching processes to study Hawkes processes. In particular, this
procedure can be used to simulate a Hawkes process N as presented in Algorithm 3.

Algorithm 3: Branching simulation algorithm for self-exciting Hawkes process
Input Parameters µ, h a positive function, and an end-time T ;
Initialization Initialize list of times T , tk = 0 and auxiliary empty list Laux;
Generate the number of parents N0 according to a Poisson distribution with parameter
µT ;

Generate parent event times (T c
k )k as N0 independent and uniformly distributed points

in [0, T ], that are then sorted;
Add all points (T c

k )k to Laux and T ;
while Laux is not empty do

for t in Laux do
Generate a number of children with Poisson distribution of parameter ∥h∥1;
Generate the children times distributed according to the probability density
function h(· − t)/∥h∥1.;

Add all points inside the simulation window [0, T ] to Laux and T ;
end

end
return Ordered sequence of jumps T .

The fact that such an algorithm will end, in other words that each subsidiary process will
end up by not generating any point, is a direct consequence of the condition ∥h∥1 < 1. This is a
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result of Galton-Watson process theory, as each point tends to generate on average less than a
children, the branches will “die out” eventually.

This algorithm presents some advantages when compared to Ogata’s procedure. First, it does
not require to compute an upper-bound for the intensity function, which as seen previously, is an
important step in Algorithm 2. Second, this procedure does not have a rejection step and there
is no need to compute the value λ each time that a point is simulated, which can greatly reduce
the overall computation time. Overall, the only constraint on h imposed by Algorithm 3 is to
be able to simulate according to the probability density function h(· − t)/∥h∥1. Nevertheless,
this method is not longer valid to simulate non-linear Hawkes processes that lack the branching
structure of the linear Hawkes process.
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Maximum Likelihood Estimation for Hawkes

Processes with self-excitation or inhibition

In this chapter, we present a maximum likelihood method for estimating the parameters of a
univariate Hawkes process with self-excitation or inhibition. Our work generalizes techniques and
results that were restricted to the self-exciting scenario. The proposed estimator is implemented
for the classical exponential kernel and we show that, in the inhibition context, our procedure
provides more accurate estimations than current alternative approaches.
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3.1 Introduction

The Hawkes model is a point process observed on the real line, which generally corresponds to
the time, where any previously encountered event has a direct influence on the chances of future
events occurring. This past-dependent mathematical model was introduced in Hawkes (1971)
and its first application was to model earthquakes occurrences (Ogata 1988; Ogata 1998). Since
then, Hawkes processes have been widely used in various fields, for instance finance (Bacry et al.
2013), social media (Rizoiu et al. 2017; Mishra et al. 2016), epidemiology (Rizoiu et al. 2018),
sociology (Linderman et al. 2014) and neuroscience (Reynaud-Bouret et al. 2014).

The main advantage of Hawkes processes is their ability to model different kinds of relation-
ships between phenomena through an unknown kernel or transfer function. The Hawkes model

31
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was originally introduced as a self-exciting point process where the appearance of an event in-
creases the chances of another one triggering. Several estimation procedures have been proposed
for the kernel function, both in parametric (Ogata 1988; Da Fonseca et al. 2013; Ozaki 1979)
and nonparametric (Reynaud-Bouret et al. 2014; Bacry et al. 2016) frameworks.

However, the inhibition setting, where the presence of an event decreases the chance of another
occurring, has drawn less attention in the literature, although it can be of great interest in several
fields, in particular in neuroscience (Lambert et al. 2018). In this inhibition context, the cluster
representation (Hawkes et al. 1974) on which is based the construction of a self-exciting Hawkes
process, is no longer valid. While the existence and the construction of such nonlinear processes
can be found in recent works for the univariate (Costa et al. 2020) and multivariate (Chen et
al. 2017) cases, statistical estimation of the kernel function has been hardly addressed. A first
approach consists in computing an approximation of the likelihood as if the intensity function
could take negative values, and optimizing it to get a maximum likelihood estimator (Lemonnier
et al. 2014). Alternatively, the type of interaction (excitation or inhibition) can be considered as
a hidden variable, giving rise to a very practical estimation method (Mei et al. 2017).

In this chapter, we propose a maximum likelihood procedure that can handle both excitation
and inhibition scenarios for a univariate Hawkes process. Our approach is based on an explicit
computation of the likelihood for any type of monotone kernel functions, which is facilitated by
the introduction of the natural concept of restart points. The latter are the times when the
intensity function, that can be null on some intervals, become strictly positive again. We show
that these restart points have a closed-form expression when the kernel is exponential, which
allows us to rewrite and maximize the likelihood without approximations that are proposed for
instance in Lemonnier et al. (2014). Our estimator is implemented in Python (the code is freely
available online1). We also propose a numerical study which shows the good performance of our
exact estimation procedure compared to approximated approaches, especially when the intensity
function is frequently equal to zero.

To outline the chapter, besides a quick introduction to self-regulating Hawkes processes (also
referred to as self-correcting Hawkes processes or Hawkes processes with inhibition), Section 3.2
introduces the concepts of underlying intensity function and restart points. General results con-
cerning the compensator and the exact maximum likelihood estimation procedure are described
in Section 3.3. At last, after a brief discussion about goodness-of-fit in Section 3.4, Section 3.5
concludes with a numerical study of the estimation error.

3.2 The Hawkes process

Let N be a point process on R∗
+, here R∗

+ = {x > 0 : x ∈ R}, and (Tk)k≥1 its associated event
times (with convention T0 = 0). For any t ≥ 0, let us note N(t) =

∑
k≥1 1Tk≤t the number

of events in [0, t] (where 1· stands for the indicator function), and λ its conditional intensity
function (Daley et al. 2003):

λ(t) = lim
h→0

P(N(t+ h)−N(t) > 0)

h
.

1https://github.com/migmtz/hawkes-inhibition-expon

https://github.com/migmtz/hawkes-inhibition-expon
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A univariate Hawkes process is a point process defined by the conditional intensity function:

λ(t) =

(
λ0 +

∫ t

0

h(t− s) dN(s)

)+

=

λ0 + ∑
Tk≤t

h(t− Tk)

+

, (3.1)

where x+ = max(0, x) denotes the positive part of any real value x, λ0 ∈ R∗
+ is the baseline

intensity and h : R+ → R is the kernel, which is assumed to be a monotone measurable function
with limt→∞ h(t) = 0. The kernel function h is the key component of a Hawkes process: it
translates the influence (generally assumed to fade away over time) of a past event over the
process. Here, h is allowed to take negative values, meaning that it can model both self-exciting
and self-regulating Hawkes processes.

Working with such Hawkes processes may prove to be difficult as the positive part function
is non-linear. In particular, while computing the compensator function (Daley et al. 2003)

Λ(t) =

∫ t

0

λ(t) dt , ∀t ≥ 0, (3.2)

is very easy in the self-exciting case (by linearity of the intensity), it becomes more challenging
for the self-regulating Hawkes process. As it is the keystone to derive the likelihood function
(and then to obtain a parametric estimation method), our first contribution is to provide an
exact expression of the compensator.

For this purpose, let us first introduce the underlying intensity function and the restart time,
two quantities which will allow us to derive the computation of the likelihood of a monotone
Hawkes process, in a framework unifying self-correcting and self-exciting Hawkes processes.

Definition 3.2.1. Let the underlying intensity function of N be:

λ⋆(t) = λ0 +

∫ t

0

h(t− s) dN(s) .

In addition, let the restart time T ⋆
k be, for any positive integer k:

T ⋆
k = inf {t ≥ Tk | λ(t) > 0} ,

along with its corresponding cooldown interval τ∗k = T ∗
k − Tk.

As illustrated in Figure 3.1, λ⋆ corresponds to the intensity λ as if it were allowed to take
negative values. Moreover, as the kernel is assumed to be monotone, the restart time associated
to one occurrence can be interpreted as the first moment after this occurrence from which λ and
λ⋆ become equal (in particular, the restart time and the occurrence time coincide if the intensity
function is nonnegative at this time, see Figure 3.1):

T ⋆
k = inf {t ≥ Ti | ∀t ∈ (T ∗

k , Tk+1), λ(t) = λ⋆(t)} .

3.3 Maximum likelihood estimation and the exponential model

Assume a parametric model P = {λθ, θ ∈ Θ} for the conditional intensity function λ, where θ
contains unknown quantities such as the baseline λ0 and the kernel h. Then, with convention
log(t) = −∞ for t ≤ 0, the log-likelihood ℓt of any θ ∈ Θ with respect to the observations
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Figure 3.1: Example of the intensity (red curve) and underlying intensity (blue curve) for a self-
regulating Hawkes process, with the associated restart times. We only see the negative values of
the blue curve since they precisely correspond to the values for which the two intensity functions
are not equal.

T1, . . . , TN(t) in the time interval [0, t] is (Daley et al. 2003, Proposition 7.2.III.), (Ozaki 1979):

ℓt(θ) =

N(t)∑
k=1

log (λθ(T
−
k ))− Λθ(t) , (3.3)

where the compensator Λθ is defined as in Equation (3.2) and λθ(T−
k ) = limt→T−

k
λθ(t).

Equation (3.3) reveals the importance of being able to compute the compensator Λ (equiva-
lently Λθ) in order to provide a practical implementation of the maximum likelihood estimator
of λ. Thus, a first contribution of this work lies in Proposition 3.3.1, which establishes a decom-
position of the compensator Λ using the underlying intensity function λ⋆ and the restart times
T ⋆
1 , . . . , T

⋆
N(t).

Proposition 3.3.1. For any t > 0, the compensator Λ can be expressed as:

Λ(t) =


λ0t if t < T1

λ0T1 +

N(t)−1∑
k=1

∫ Tk+1

T⋆
k

λ⋆(u) du+

∫ t

T⋆
N(t)

λ⋆(u) du if t ≥ T1 ,
(3.4)

with the conventions that the sum is equal to 0 if N(t) = 1 and the last integral is equal to 0 if
t < T ∗

N(t).

Proof. This comes directly from splitting the integral of Λ(t) =
∫ t

0
λ(t) dt on the intervals

[Tk, Tk+1) (k ∈ {0, . . . , N(t) − 1}) and [TN(t), t], and by remarking that, since h is monotone,
∀t ∈ [Tk, Tk+1), λ(t) = λ⋆(t)1[T∗

k ,Tk+1)(t).

In order to give an explicit computation of the quantity
∫ Tk+1

T⋆
k

λ⋆(u) du (equivalently
∫ t

T⋆
N(t)

λ⋆(u) du)
which appears in Proposition 3.3.1, we focus on the classical scenario where we consider an ex-
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ponential kernel h(t) = αe−βt, for some α ∈ R and β ∈ R∗
+. Let us notice that α can be either

positive or negative, meaning that the process may be either self-exciting or self-regulating.
Then, the underlying intensity function can be written as:

λ⋆(t) = λ0 +

∫ t

0

αe−β(t−s) dN(s) . (3.5)

The forthcoming proposition steps forward in computing the compensator for an exponential
kernel.

Proposition 3.3.2 (Compensator for exponential kernel). Let t > 0 and k ∈ {1, . . . , N(t)}. The
restart times read:

T ⋆
k = Tk + β−1 log

(
λ0 − λ⋆(Tk)

λ0

)
1λ⋆(Tk)<0 ,

and the compensator is expressed as in Equation (3.4), with, for any τ ∈ [T ∗
k , Tk+1]:∫ τ

T⋆
k

λ⋆(u) du = λ0(τ − T ⋆
k ) + β−1(λ⋆(Tk)− λ0)(e

−β(T⋆
k−Tk) − e−β(τ−Tk)) .

Proof. The proof is in 3.A.

Corollary 3.3.1 (Log-likelihood for exponential kernel). Let

P =

{
λθ = λ̄0 +

∫ t

0

ᾱe−β̄(t−s) dN(s) : θ = (λ̄0, ᾱ, β̄) ∈ Θ

}
, (3.6)

be a parametric exponential model for the conditional intensity function λ with Θ = R∗
+×R×R∗

+,
along with the candidate compensator Λθ, the underlying intensity function λ⋆θ and the restart
times T ⋆

θ,1, . . . , T
⋆
θ,N(t) associated to λθ (see Equation (3.2) and Definition 3.2.1).

For any θ = (λ̄0, ᾱ, β̄) ∈ Θ, by denoting

Λθ,k = λ̄0(Tk − T ⋆
θ,k−1) + β̄−1(λ⋆θ(Tk−1)− λ̄0)(e

−β̄(T⋆
θ,k−1−Tk−1) − e−β̄(Tk−Tk−1)) ,

the log-likelihood reads (with convention log(x) = −∞ for x ≤ 0):

ℓt(θ) = log λ̄0 − λ̄0T1 +

N(t)∑
k=2

[
log
(
λ̄0 + (λ⋆θ(Tk−1)− λ̄0)e

−β̄(Tk−Tk−1)
)
− Λθ,k

]
−
[
λ̄0(t− T ⋆

θ,N(t)) + β̄−1(λ⋆θ(TN(t))− λ̄0)
(
e−β̄(T⋆

θ,N(t)−TN(t)) − e−β̄(t−TN(t))
)]

1t>T⋆
θ,N(t)

.

(3.7)

Proof. By Equation (3.8) in the proof of Proposition 3.3.2,

λ⋆θ(T
−
k ) =

{
λ̄0 if k = 1,

λ̄0 + (λ⋆θ(Tk−1)− λ̄0)e
−β̄(Tk−Tk−1) if k ≥ 2.

Combining this expression with Propositions 3.3.1 and 3.3.2 leads to the result.
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Corollary 3.3.1 exhibits that the log-likelihood for self-regulating Hawkes processes with an ex-
ponential kernel can be evaluated in O(N(t)) operations (by computing iteratively the quantities
T ⋆
θ,k and Λθ,k appearing in the summation of Equation (3.7)), as already known for self-exciting

exponential Hawkes processes Laub (2014, Chapter 4.2). For other monotone kernels without the
Markov property, evaluating the log-likelihood with the method proposed here requires O(N(t)2)
operations, similarly to existing approaches for self-exciting Hawkes processes.

3.4 Goodness-of-fit

Even though computing the compensator Λ (equivalently Λθ) was clearly motivated by maximum
likelihood estimation, it turns out that it is of great benefit to assess goodness-of-fit, and in
particular to check the validity of a maximum likelihood estimation. This is possible thanks to
the Time Change Theorem, a result originally stated for inhomogeneous Poisson processes.

Theorem 3.4.1 ((Daley et al. 2003, Theorem 7.4.IV)). Assume that Λ is continuous, monotone
and Λ(t) −−−→

t→∞
∞ a.s. Then a.s., a sequence of event times (Uk)k≥1 is a realization of N if and

only if (Λ(Uk))k≥1 is a realization of a homogeneous Poisson process with unit intensity.

Let us note that we can find applications of Theorem 3.4.1 to self-exciting Hawkes processes
in the literature (Laub 2014, Chapter 5). Since for self-regulating Hawkes processes Λ is still
monotone, this result can also be applied in our case.

To be more precise, let us consider θ ∈ Θ and the null hypothesis: “(Uk)k≥1 is a realization of
an exponential Hawkes process with parameter θ”. This hypothesis can be tested by applying a
Kolmogorov-Smirnov test between the empirical distribution of (Λθ(Uk+1)− Λθ(Uk))k≥1 and an
exponential distribution with parameter 1. This procedure is illustrated in Table 3.1, Section 3.5.

3.5 Numerical Results

This section is aimed at assessing the maximum likelihood estimation method for self-regulating
Hawkes processes, based on the exact computation of the compensator Λθ in the exponential
model (3.6) (Corollary 3.3.1). This procedure is compared to the approximated maximum like-
lihood estimation proposed in Lemonnier et al. (2014), which consists in approximating Λθ by:

ΛLM
θ (t) =

∫ t

0

λ⋆θ(u) du .

This optimization procedure is performed with the L-BFGS-B algorithm from the Scipy package
(with (1, 0, 1) as a starting guess and a bounds argument such that λ0 ≥ 0, α ∈ R, β ≥ 0). In
other words, estimators are:

θ̂ ∈ argmaxθ∈Θ

{
ℓTNmax

(θ) =

Nmax∑
k=1

log (λθ(T
−
k ))− Λθ(TNmax)

}
,

where Nmax = 200 is the total number of jumps and Λθ can be replaced by ΛLM
θ to obtain the

approximated likelihood proposed in Lemonnier et al. (2014).
The comparison between the exact and the approximated estimation procedure is based on

simulated data sets coming from self-correcting Hawkes processes of the form (3.6) with 6 different
values of θ = (λ̄0, ᾱ, β̄) ∈ Θ (see Table 3.1) which have been chosen in order to explore different
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scenarios, in particular depending on whether the intensity function is frequently null or not.
Observations are sets of time jumps generated with a sampling algorithm (see the algorithm in
3.B and Python implementation online), which is a particular case of Ogata’s thinning simulation
method (Ogata 1981) that can handle Hawkes processes with either self-excitation or inhibition.
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Figure 3.2: Top panel: relative absolute errors of estimations θ̂ = (λ̂0, α̂, β̂). Bottom panel:
example of simulated intensities for each set of values θ = (λ̄0, ᾱ, β̄) with the corresponding
average percentage of time when the intensities are equal to zero.

Figure 3.2 represents the relative absolute errors of estimations θ̂ = (λ̂0, α̂, β̂) for each of the 6
simulated models. We observe that the exact approach provides more accurate estimations than
the approximated procedure (as illustrated in the boxplots of Figure 3.2 and by the p-values
of the goodness-of-fit tests in Table 3.1). As expected, the more time the conditional intensity
equals 0 (from left to right in Figure 3.2), the greater the differences between the two procedures.
Furthermore, the leftmost boxplot confirms that when the underlying intensity is nonnegative
both methods are mostly identical. Let us note that in this case the estimation of ᾱ is rather
wrong (the estimation of β̄ is impacted consequently) probably because its value is close to 0
compared to the magnitude of λ̄0.

3.6 Discussion

In this chapter we proposed a maximum likelihood approach for Hawkes processes that can
handle both self-exciting and self-regulating scenarios, the first case being already covered in the
literature and the latter being our main contribution. For this purpose, we define the concepts
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Parameters Estimations
λ̄0 ᾱ β̄ λ̂0 α̂ β̂ p-value

Exact 0.5 -0.001 0.4 0.52 0.03 2.13 0.38
Approx 0.52 0.03 2.11 0.38
Exact 0.5 -0.2 0.4 0.51 -0.21 0.45 0.42

Approx 0.51 -0.22 0.47 0.42
Exact 1.05 -0.75 0.8 1.06 -0.76 0.83 0.43

Approx 1.12 -0.88 0.84 0.35
Exact 2.43 -0.98 0.4 2.59 -1.00 0.38 0.53

Approx 2.90 -1.21 0.40 0.45
Exact 2.85 -2.5 1.8 2.81 -2.56 1.87 0.36

Approx 1.55× 104 −1.63× 107 3.04 0.07
Exact 1.6 -0.75 0.1 1.62 -0.76 0.11 0.42

Approx 2.72× 107 −2.31× 1010 0.27 2.14× 10−05

Table 3.1: Quantitative assessment of the numerical study: sets of true parameters (left), average
estimations over 50 repetitions (middle) and average p-values over 50 independent realisations
for the test of Section 3.4.

of underlying intensity function and restart times when working with monotone kernel functions.
In particular we obtain exact expressions of the compensator for the exponential Hawkes process
which is the key step of the estimation procedure. We present numerical results on synthetic
data that show the efficiency of our procedure, with a substantial improvement compared to
approximated approaches when the intensity function is frequently null.

From a theoretical point of view, future work will consist in adapting analytical results to
study the convergence of our estimator in the self-regulating case. Regarding modeling, it would
be of great interest to consider kernel functions outside the classical exponential scenario. An-
other important step is the extension of our concepts and algorithms to the multivariate version
of the process, which is not straightforward since in the multivariate setting the expression of
the restart times are no longer explicit. This last point is essential in order to target real-world
datasets since in many applications, being limited to the univariate case will lead to detect self-
excitation. However, a model that accounts for potential inhibition effects is of great interest
when considering interactions between events of different natures, which will typically be mod-
eled by a multivariate process. This multidimensional extension is the object of a future work,
with a further perspective to use our procedure in neuroscience applications in order to detect
attraction and repulsion effects between neurons.

3.A Proof of Proposition 3.3.2

Let us begin by expressing the underlying intensity function between two event times. First,
λ⋆(t) = λ0 for t ∈ [0, T1). Then, for any k ∈ N, for all t ∈ [Tk, Tk+1), the underlying intensity is
differentiable in t and

(λ⋆)′(t) = −β(λ⋆(t)− λ0) ,

with the left condition: λ⋆k := λ⋆(Tk). Solving this differential equation leads to

λ⋆(t) = λ0 + (λ⋆k − λ0)e
−β(t−Tk) . (3.8)
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Now, by definition of the restart time T ⋆
k = inf {t ≥ Tk | λ(t) > 0}, we have that if λ⋆k ≥ 0,

then T ⋆
k = Tk. Otherwise, as λ⋆ is continuous on the interval [Tk, Tk+1), we obtain T ⋆

k by solving
for t: λ⋆(t) = 0. Thus, by Equation (3.8):

λ⋆(T ⋆
k ) = 0 ⇐⇒ T ⋆

k = Tk + β−1 log

(
λ0 − λ⋆k
λ0

)
.

Gathering both situations, we obtain the first part of Proposition 3.3.2:

T ⋆
k = Tk + β−1 log

(
λ0 − λ⋆k
λ0

)
1λ⋆

k<0

.
Let now k ∈ {1, . . . , N(t)} and τ ∈ [T ⋆

k , Tk+1]. By Equation (3.8),∫ τ

T⋆
k

λ⋆(u) du =

∫ τ

T⋆
k

(
λ0 + (λ⋆k − λ0)e

−β(u−Tk)
)
du

= λ0(τ − T ⋆
k ) + β−1(λ⋆k − λ0)(e

−β(T⋆
k−Tk) − e−β(τ−Tk)) ,

which is the second part of Proposition 3.3.2.

3.B Simulation algorithm

Algorithm 4 builds upon Ogata’s thinning simulation method (Ogata 1981, Proposition 1) in
order to handle Hawkes processes with either self-excitation or inhibition.

Algorithm 4: Thinning algorithm for monotone Hawkes process.
Input Parameters λ0, h a monotone function, and a stopping criteria (end-time T or
maximal number of jumps Nmax);

Initialization Initialize λk = λ0, tk = 0 and list of times T = ∅;
while Stopping criteria not fulfilled do

Set λmax = max(λ0, λk);
Generate candidate time tcand = tk − log(U1)

λmax
, U1 ∼ U([0, 1]);

Estimate intensity λk = λ(tcand) using sequence of times T ;
Sample U2 ∼ U([0, 1]);
if U2 ≤ λk

λmax
then

Add tcand to sequence of times T ;
Update λk = λk + α;

end
Set tk = tcand;

end
return the sequence of jumps T .
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Inference of multivariate exponential Hawkes
processes with inhibition and application to

neuronal activity

The multivariate Hawkes process is a past-dependent point process used to model the rela-
tionship of event occurrences between different phenomena. Although the Hawkes process was
originally introduced to describe excitation interactions, which means that one event increases
the chances of another occurring, there has been a growing interest in modelling the opposite
effect, known as inhibition. In this chapter, we focus on how to infer the parameters of a mul-
tidimensional exponential Hawkes process with both excitation and inhibition effects. Our first
result is to prove the identifiability of this model under a few sufficient assumptions. Then we
propose a maximum likelihood approach to estimate the interaction functions, which is, to the
best of our knowledge, the first exact inference procedure in the frequentist framework. Our
method includes a variable selection step in order to recover the support of interactions and
therefore to infer the connectivity graph. A benefit of our method is to provide an explicit
computation of the log-likelihood, which enables in addition to perform a goodness-of-fit test for
assessing the quality of estimations. We compare our method to standard approaches, which
were developed in the linear framework and are not specifically designed for handling inhibiting
effects. We show that the proposed estimator performs better on synthetic data than alternative
approaches. We also illustrate the application of our procedure to a neuronal activity dataset,
which highlights the presence of both exciting and inhibiting effects between neurons.
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4.1 Introduction

A Hawkes process is a point process in which each point is commonly associated with event
occurrences in time. In this past-dependent model, every event time impacts the probability
that other events take place subsequently. These processes are characterised by the conditional
intensity function, seen as an instantaneous measure of the probability of event occurrences.
Since their introduction in Hawkes (1971), Hawkes processes have been applied in a wide variety
of fields, for instance in seismology (Ogata 1988), social media (Rizoiu et al. 2017), criminology
(Olinde et al. 2020) and neuroscience (Lambert et al. 2018).

The multidimensional version of this model, referred to as the multivariate Hawkes process,
describes the appearance of different types of events, the occurrences of which are influenced
by all past events of all types. Each interaction between two types of events is encoded in ker-
nel functions, also called interaction functions. Originally this model takes only into account
mutually exciting interactions - an event increases the chances of others occurring - by assum-
ing that all kernel functions are non-negative. A specificity of self-exciting Hawkes processes is
their branching structure, also known as cluster structure. Introduced in Hawkes et al. (1974),
this parallel between Hawkes processes and branching theory has provided the first theoretical
background for the self-exciting Hawkes model, in particular existence and expected number of
points on a finite interval. Estimation methods in the literature are vast including maximum
likelihood estimators (Ozaki 1979; Guo et al. 2018) and method of moments (Da Fonseca et al.
2013). Nonparametric approaches include an EM procedure introduced in Lewis et al. (2011),
estimations obtained via the solution of Wiener-Hopf equations (Bacry et al. 2016) or by ap-
proximating the process through autoregressive models (Kirchner 2017) or through functions in
reproducing kernel Hilbert spaces (Yang et al. 2017).

Although the self-exciting Hawkes process remains widely studied, there has been a grow-
ing interest in modeling the opposite effect, known as inhibition, in which the probability of
observing an event is lowered by the occurrence of certain events. In practice, this amounts



4.1. Introduction 42

to considering negative kernel functions. In order to maintain the positivity of the intensity
function, a non-linear operator is added to the expression which in turns entails the loss of the
cluster representation. This model known as the non-linear Hawkes process was first presented
in Brémaud et al. (1996), where existence of such processes was proved via construction using
bi-dimensional marked Poisson processes. Such approach of analysis has been used in the liter-
ature as in Chen et al. (2017), where a coupling process is established and leveraged to obtain
theoretical guarantees on cross-analysis covariance. Another approach is presented in Costa et al.
(2020), where renewal theory allows to obtain limit theorems for processes with bounded sup-
port kernel functions. Estimation methods focus mainly on nonparametric methods for general
interactions and non-linear functions, as found in Bacry et al. (2016) and Sulem et al. (2024).

In the last years, alternative models have been designed in order to take into account inhibiting
effects in Hawkes processes. An example is the neural Hawkes process, presented in Mei et al.
(2017) and Zuo et al. (2020), which combines a multivariate Hawkes process and a recurrent
neural network architecture. In Duval et al. (2022), a multiplicative model considers two sets
of neuronal populations, one exciting and another inhibiting, and each intensity function is the
product of two non-linear functions (one for each group). Another model is presented in Olinde
et al. (2020) and called self-limiting Hawkes process. It includes the inhibition as a multiplicative
term in front of a the traditional self-exciting intensity function.

In this chapter, we present a maximum likelihood estimation method for multivariate Hawkes
processes with exponential kernel functions, that works for both exciting and inhibiting inter-
actions, as modelled by Brémaud et al. (1996) and Chen et al. (2017). This work builds upon
the methodology for the univariate case, presented in Bonnet et al. (2021), by focusing in the
intervals where the intensity function is positive. We show that, under a weak assumption on the
kernel functions, these intervals can be determined exactly. We can then write for each dimension
the integral of the intensity function, known in the literature as the compensator, which in turn
provides an explicit expression of the log-likelihood. This enables to build the corresponding
maximum likelihood estimator and we complete our procedure with a variable selection step to
recover the significant interactions within the whole process. This is of particular interest since
it provides a graphical interpretation of the model and it can also be used a reduction dimension
tool. Our numerical procedure is implemented in Python and freely available on GitHub.1 As a
by-product of our method, the closed-form expression of the compensator also allows to assess
goodness-of-fit via the Time Change Theorem and multiple testing. We carry out a numerical
study on simulated data and on a neuronal activity dataset (Petersen et al. 2016; Radosevic et al.
2019). The performance of our approach is compared to estimations obtained via approximations
from Bacry et al. (2020) and Lemonnier et al. (2014), and we show that our method not only
achieves better estimations but is capable of identifying correctly the interaction network of the
process.

To outline this chapter, Section 4.2 presents the multivariate Hawkes process framework and
reviews the literature regarding inference of non-linear Hawkes processes. In Section 4.3, we detail
our procedure, including the maximum likelihood estimation, variable selection and goodness-of-
fit test to assess the quality of the estimations. We also address the question of identifiability of
the model, that we prove under a few sufficient conditions. The whole procedure is illustrated on
simulated data in Section 4.4 and applied to a neuronal activity dataset in Section 4.5. In Section
4.6 we discuss our contributions and its current limitations along with interesting perspectives
for future work.

1https://github.com/migmtz/multivariate-hawkes-inhibition

https://github.com/migmtz/multivariate-hawkes-inhibition
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4.2 The multivariate Hawkes process

4.2.1 Definition

A multivariate Hawkes process N = (N1, N2, . . . , Nd) of dimension d is defined by d point
processes on R∗

+, denoted N i : B(R∗
+) → N, where B(R∗

+) is the Borel algebra on the set of
positive numbers.

Each process N i can be characterised by its associated event times
(
T i
k

)
k

and its conditional
intensity function, defined for all t ≥ 0 by

λi(t) =

µi +

d∑
j=1

∫ t

0

hij(t− s) dN j(s)

+

=

µi +

d∑
j=1

∑
T j
k≤t

hij(t− T j
k )

+

, (4.1)

where x+ = max (0, x). Here, the quantity µi ∈ R∗
+ is called the baseline intensity and each

interaction or kernel function hij : R∗
+ → R represents the influence of the process N j on the

process N i and T j
k corresponds to the k-th event time of process N j .

Remark. The positive-part function in Equation (4.1) is needed to ensure the non-negativity
of λi in the presence of strong inhibiting effects, that is when some interaction functions hij
are sufficiently negative compared to positive contributions. Concretely, the positive part does
not affect the intensity function if inhibiting effects are in minority compared to the positive
contributions (exciting effects or baseline intensities).

Remark. Equation (4.1) may question the reader for two reasons. First, it is the cadlag defini-
tion of a the conditional intensity of a Hawkes process. It’s our choice to prefer it to the caglad
version but all the results presented here can be written in this setting. Second, it is considered
that the history is empty for t < 0. It is a common choice for statistical inference (a finite amount
a times is observed) while the infinite history is preferred for a probabilistic analysis based on a
stationary assumption.

For each process N i and for all t ≥ 0, let us note N i(t) =
∑

k≥1 1T i
k≤t the measure of (0, t]

and the compensator

Λi(t) =

∫ t

0

λi(u) du .

The process N can be seen as a point process on R∗
+, where for any B ∈ B(R∗

+), N(B) =∑d
i=1N

i(B). Similarly to a univariate process, N can be characterised by its conditional intensity
λ (also called total intensity):

λ(t) =

d∑
i=1

λi(t) , (4.2)

and by its compensator

Λ(t) =

∫ t

0

λ(u) du =

d∑
i=1

Λi(t) .

From this point of view, the process N is associated to event times
(
T(k)

)
k

=
(
Tmk
uk

)
k
,
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corresponding to the ordered sequence composed of
⋃d

i=1{T i
k | k > 0}, and we may define, for

every t ≥ 0, N(t) =
∑

k≥1 1T(k)≤t =
∑d

i=1N
i(t). Here, (uk)k is the random ordering sequence

and (mk)k the sequence of marks that make it possible to identify to which dimension each time
corresponds. These marks can be written as

mk =

d∑
j=1

j1Nj({T(k)})=1 .

Remark. A more detailed introduction of multivariate point processes via the concept of marked
point processes can be found in Daley et al. (2003, Chapter 6.4)

As the aim of this chapter is to describe a practical methodology for estimating the conditional
intensities λ1, . . . , λd via maximising the log-likelihood, the latter quantity has to be made
explicit. Let t ≥ 0 and assume that event times

{
T i
k : 1 ≤ k ≤ Ni(t), 1 ≤ i ≤ d

}
are observed

in the interval (0, t]. Then, given a parametric model P = {(λ1θ1 , . . . , λ
d
θd
) : θ = (θ1, . . . , θd) ∈

Θ1 × · · · × Θd} (and associated compensators Λ1
θ1
, . . . ,Λd

θd
) for conditional intensity functions

λ1, . . . , λd, for every θ ∈ Θ, the log-likelihood ℓt(θ) reads Daley et al. (2003, Proposition 7.3.III.)

ℓt(θ) =

d∑
i=1

ℓit(θi) ,

with

ℓit(θi) =

Ni(t)∑
k=1

log λiθi(T
i−
k )− Λi

θi(t) , (4.3)

where λiθi(T
i−
k ) = limt→T i−

k
λiθi(t) and with convention log (x) = −∞ for x ≤ 0.

The heart of the problem in deriving a maximum likelihood estimator for the conditional
intensities λi is being able to evaluate exactly the compensator values Λi

θ(t) for every possible
θ ∈ Θ, which requires to determine when the conditional intensities λi are non-zero. The
forthcoming sections clear this point up.

4.2.2 Related work
Estimation methods for Hawkes processes have focused mainly on self-exciting interactions (by
assuming hij ≥ 0). In Ozaki (1979), the author presents the maximum likelihood estima-
tion method for univariate processes with exponential kernel h(t) = αe−βt (α > 0, β > 0),
the same method being established in Mishra et al. (2016) for the power law kernel function
h(t) = αβ

(1+βt)1+γ (α > 0, β > 0, γ > 0). In Chen et al. (2018) the maximum likelihood method is
presented for the multivariate version with exponential kernel, while Bacry et al. (2020) proposed
an inference method based on optimising a least-squares criterion. Other methods in the para-
metric setting include spectral analysis (Adamopoulos 1976), EM algorithm (Veen et al. 2008)
and method of moments (Da Fonseca et al. 2013).

Estimators of the interaction functions hij are also presented in a nonparametric setting.
For instance, Yang et al. (2017) proposed to estimate hij in a reproducing kernel Hilbert space.
Reynaud-Bouret et al. (2014) proposed a decomposition of the interaction functions hij on a
histogram basis with bounded support, the estimation of which are obtained by minimising a
least-squares contrast. Hawkes processes with excitation have also been studied in a Bayesian
context, with likelihood-based approaches, as in Rasmussen (2013) for the univariate case and
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in Donnet et al. (2020) for multivariate processes.
Although inhibiting effects in Hawkes processes were first mentioned in Brémaud et al. (1996),

they have only met a growing interest in the last decade. Concerning inference, most of the
known methods are not designed for handling the inhibiting case: nevertheless some are able in
practice to estimate negative interactions by minimising a least-squares criterion, but without
guaranteeing that the estimated intensity functions remain non-negative (Reynaud-Bouret et al.
2014; Bacry et al. 2020). A similar approach is proposed in Lemonnier et al. (2014) for maximum
likelihood estimation, where the compensator Λi is approximated by integrating the conditional
intensity λi without the positive part function (see Equation (4.1)). Obviously, these methods
should perform well when the intensities remain mostly positive, but it is unclear how they will
adapt to scenarios when the intensities are frequently equal to zero due to inhibiting terms. A
similar remark is mentioned in Bacry et al. (2016) concerning their estimation method, that
can provide negative estimations of the interactions only if there is a negligible chance of the
intensities to be null.

Inference procedures that are specifically dedicated to Hawkes processes with inhibition are
scarcer in the literature. Sulem et al. (2024) presents various results for non-linear Hawkes
processes including inhibition effects: existence, stability and Bayesian estimation for kernel
functions with bounded support. Deutsch et al. (2024) presents choices of priors for Bayesian
estimation based on a new reparametrisation of the process.

Lastly, Bonnet et al. (2021) presents a maximum likelihood estimation adapted to the uni-
variate Hawkes process with inhibition and monotone kernel functions. The decisive contribution
of this work is to give, for an exponential kernel h(t) = αe−βt (α ∈ R, β > 0), a closed-form
expression of restart times, which are defined as the instants at which the single conditional in-
tensity becomes non-zero. This makes possible to compute explicitly the compensator and then
the log-likelihood. Yet, this study is limited to the univariate case.

This work goes a step forward in estimation of multivariate Hawkes processes with inhibition,
by providing the first exact maximum likelihood method for exponential interactions hij(t) =
αije

−βijt, combined with a variable selection procedure. As it will be explained in the next
section, the proposed approach also enables to perform standard goodness-of-fit tests. It has
to be noted that the concurrent work of Deutsch et al. (2024) proposed a similar approach for
multivariate Hawkes processes to exactly compute the compensator, but was used neither for
maximum likelihood estimation, nor for goodness-of-fit tests.

4.3 Estimation and goodness-of-fit

4.3.1 Introductive example
Before motivating and explaining the estimation procedure proposed in this chapter, we present
an example of multivariate Hawkes process. Figure 4.1 depicts in red conditional intensities λ1
and λ2 for a realisation of a 2-dimensional Hawkes process (see the forthcoming section for the
definition of underlying intensities). The existence of such a process (along with its stationarity)
is ensured by controlling the spectral radius ρ(S+) < 1 of the matrix S+ = (∥h+ij∥1)ij (Deutsch
et al. 2024). Similar results with slightly different conditions can be found in Brémaud et al.
(1996) and Sulem et al. (2024). The simulation has been carried out with baselines µ1 = 0.5 and
µ2 = 1.0, and with exponential kernels hij(t) = αije

−βijt parameterised by:(
α11 α12

α21 α22

)
=

(
−1.9 3.0
0.9 −0.7

)
, and

(
β11 β12
β21 β22

)
=

(
2.0 20.0
3.0 2.0

)
.
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These kernels have been chosen such that both processes are self-inhibiting (α11, α22 < 0) but
inter-exciting (α12, α21 > 0).
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Figure 4.1: Simulation of a 2-dimensional Hawkes process. Each cross corresponds to an event
time, and each T(k) is shown in its corresponding process.

The goal of this work is to establish a parametric estimation method, via maximum likelihood
estimation, that is able to handle both excitation and inhibition frameworks in the multivariate
case. For this purpose, it is necessary to compute explicitly the log-likelihood ℓt(θ) (see Equa-
tion (4.3)) and in particular to evaluate the compensator Λi

θ, expressed as an integral of λiθ. For
the latter, the main challenge is to determine when conditional intensities λi are non-zero, that
is on which intervals they are tailored by the exponential interaction functions and not by the
positive-part operator.

In Bonnet et al. (2021), the authors solved this challenge for univariate processes by remark-
ing that the conditional intensity is monotone between two event times. Figure 4.1 illustrates
that this is not necessarily true for multivariate processes (here, between T(2) and T(3)). This
constitutes the major difficulty we have to cope with.

4.3.2 Underlying intensity and restart times in the multivariate setting
From now on, let us focus on the exponential model (Hawkes 1971), where each interaction
function hij is then defined as

hij(t) = αije
−βijt ,

with αij ∈ R and βij ∈ R∗
+ for i, j ∈ {1, . . . , d}. For each i ∈ {1, . . . , d}, the underlying intensity

function λi⋆ is defined as in Bonnet et al. (2021) for the univariate case:

λi⋆(t) = µi +

d∑
j=1

∫ t

0

hij(t− s) dN j(s) .

This quantity coincides with the conditional intensity λi when it is non-zero, and is non-positive
otherwise. In particular, we can observe that λi(t) =

(
λi⋆(t)

)+ (see Figure 4.1).
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As explained in the previous section, the main difficulty of the multivariate exponential setting
is the non-monotony of conditional intensities λi between two event times. Determining intervals
where λi is non-zero (that is when λi⋆ is positive) would require to numerically find the roots of a
high-degree polynomial, which is expensive and inexact. To alleviate this problem, we introduce
Assumption 2.

Assumption 2. For each i ∈ {1, . . . , d}, there exists βi ∈ R∗
+ such that βij = βi for all

j ∈ {1, . . . , d}.

Remark. This model with constant recovery rates βi has been studied before in the works of
Ogata (1981) in the self-exciting version of a 2-dimensional Hawkes process. Intuitively, this
assumption considers the situation where the rate of “dissipation” of any internal or external
effect is dependent only on the receiving phenomenon. For instance, for neuronal interactions,
each activation from neuron j will have an impact on a connected neuron i dependent on both
neurons (αij)ij but the “recovery” time can be assumed to depend only on the connected neuron
i (βi)i.

As we will see in Lemma 4.3.1, this assumption enables to recover the monotony of the
conditional intensities between two times. It remains now to determine when the underlying
intensity λi⋆ is negative. To do so, we define the restart times in the multivariate framework, to
be, for any k and i:

T i⋆
(k) = min

(
inf {t ≥ T(k) : λ

i⋆(t) ≥ 0}, T(k+1)

)
.

2
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Figure 4.2: Illustration of restart times (T ⋆
(k))1≤k≤4 for each subprocess of a 2-dimensional process

associated with event times (T(k))1≤k≤4.

As exemplified in Figure 4.2, the restart time T i⋆
(k) (associated to the sub-process i) corresponds

to the first instant between T(k) and T(k+1) from which λi⋆(t) becomes non-negative (or T(k+1)

if this instant does not exist). Intuitively, it means that λi(t) = λi⋆(t) on (T i⋆
(k), T(k+1)) and
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λi(t) = 0 elsewhere on (T(k), T(k+1)). This is formalised in Lemma 4.3.1. In particular, it
appears that the restart time T i⋆

(k) can be expressed as a function of

T(k) + β−1
i log

(
µi − λi⋆(T(k))

µi

)
,

which is the single root to the equation µi + (λi⋆(T(k)) − µi)e
−βi(t−T(k)) = 0 on the interval

[T(k),+∞) when λi⋆(T(k)) < 0 (see top panel of Figure 4.2). Then, Proposition 4.3.1 gives an
explicit formulation of the compensator of each subprocessi N i, which is needed to compute the
log-likelihood (see Equation (4.3)). The proofs of these two results are presented respectively in
Appendix 4.A and Appendix 4.B.

Lemma 4.3.1. If Assumption 2 is granted, then for each i ∈ {1, . . . , d} and any k ≥ 1:

T i⋆
(k) = min

(
t⋆k, T(k+1)

)
. (4.4)

where

t⋆k =

(
T(k) + β−1

i log

(
µi − λi⋆(T(k))

µi

)
1{λi⋆(T(k))<0}

)
Furthermore, for all t ∈ (T(k), T(k+1)),

λi(t) =

{
λi⋆(t) > 0 if t ∈ (T i⋆

(k), T(k+1))

0 otherwise.

Proposition 4.3.1. [Compensator for multivariate exponential kernels] Let us suppose that As-
sumption 2 is granted. For each i ∈ {1, . . . , d} the compensator Λi of the process N i reads,
∀t ≥ 0:

Λi(t) =

{
µit if t < T(1)

µiT(1) +
∑N(t)

k=1 Jk if t ≥ T(1) ,
(4.5)

where for all integer k ∈ {1, . . . , N(t)}:

Jk = µi

[
min(t, T(k+1))− T i⋆

(k)

]
+ β−1

i

(
λi⋆(T(k))− µi

) [
e−βi(T

i⋆
(k)−T(k)) − e−βi(min(t,T(k+1))−T(k))

]
.

4.3.3 Identifiability and likelihood computation

As already mentioned in Section 4.2, let t ≥ 0 and assume that event times
{
T i
k : 1 ≤ k ≤ Ni(t),

1 ≤ i ≤ d} are observed in the interval (0, t]. We consider the parametric exponential model for
a multivariate Hawkes process of dimension d, defined by

P =
{
(λ1, . . . , λd) : λ1 ∈ P1, . . . , λd ∈ Pd

}
,

where for each i ∈ {1, . . . , d}, Pi is the exponential parametric model for the process N i:

Pi =

λiθi =
µi +

d∑
j=1

∫ t

−∞
αije

−βi(t−s) dN j(s)

+

: θi = (µi, αi1, . . . , αid, βi) ∈ Θ

 ,

where Θ = R⋆
+×Rd×R⋆

+. For a candidate set of intensities (λ1θ1 , . . . , λ
d
θd
), the underlying intensity

functions are denoted λi⋆θi (i ∈ {1, . . . , d}), the compensators Λi
θi

and the restart times (T i⋆
θi,(k)

)k.
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Now, given a realisation
(
T(k)

)
k>0

of a multivariate exponential Hawkes process, Theorem 4.3.1
establishes the correspondence between the conditional intensities and the parameters.

Theorem 4.3.1 (Identifiability). Let N = (N1, . . . , Nd) be a multivariate Hawkes process defined
by a set of intensity functions (λ1θ1 , . . . , λ

d
θd
) ∈ P, for some θ = (θ1, . . . , θd) ∈ Θd. Let also(

T(k)
)
k>0

be a realisation of N and Ft be the corresponding filtration.
Let us assume that a.s. for every (i, j) ∈ {1, . . . , d}2, i ̸= j, there exist an event time τ from

process N j, and an event time τ+ > τ from process N i, such that:

1. λiθi(τ
−) > 0;

2. there are only events of process N j in the interval [τ, τ+).

Then, for any θ′ ∈ Θd,

∀i ∈ {1, . . . , d}, λiθi(t | Ft) = λiθ′
i
(t |Ft) a.e. ⇐⇒ θ = θ′ .

The proof is presented in Appendix 4.C. To the best of our knowledge, the only identifiability
result for non-linear multivariate Hawkes processes is given by Sulem et al. (2024) but only if
interaction functions hij have a bounded support. Their proof strongly relies on this assumption
since they extend to the multivariate case the renewal properties proved by Costa et al. (2020)
for non-linear univariate Hawkes processes with a bounded kernel. Their proof also requires some
assumptions to ensure that one process is not totally inhibited, which is also a consequence of
the assumptions that we propose, as discussed in Section 4.3.4.

As expected, Proposition 4.3.1 makes it possible to compute explicitly the log-likelihood
expressed in Equation (4.3) for multivariate exponential Hawkes processes. This is formalised in
Corollary 4.3.1 (and proved in Appendix 4.D).

Corollary 4.3.1. Let i ∈ {1, . . . , d} and k ≥ 2 an integer. Let us denote

Si
k := T(N(T i

k)−1) = T(max{ℓ∈N∗:T(ℓ)<T i
k}) ,

the time preceding directly T i
k, the kth observation of process N i.

Then, for all θ ∈ Θ, the log-likelihood of process N i reads:

ℓit(θi) = log µi +

Ni(t)∑
k=2

log
(
µi + (λi⋆θi(S

i
k)− µi)e

−βi(T
i
k−Si

k)
)
− Λi

θi(t) , (4.6)

where Λi
θi

is given by Equation (4.5) and with convention log (x) = −∞ for x ≤ 0.

Algorithm 5 in Appendix 4.E presents the iterative computation of the likelihood using Equa-
tion (4.6). In particular, the complexity of the computation is O(N(t)×d). It is then possible to
establish the Maximum Likelihood Estimator, which we will refer to as (MLE). These estimators
will be denoted by a tilde: (µ̃i)i, (α̃ij)ij , (β̃i)i and (h̃ij)ij .

4.3.4 On identifiability conditions
In the previous section we presented a result on the identifiability of multivariate Hawkes process
with inhibition via Theorem 4.3.1. Let us mention that identifiability of parameters µi and βi do
not require any assumption. The challenge of the proof lies in identifying parameters αij , which
is achieved thanks to Conditions 1 and 2 of Theorem 4.3.1. Condition 1 allows to control strong
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inhibition scenarios by ensuring that each subprocess’ intensity is positive sufficiently often, and
not only at its own event times, while Condition 2 enables to disentangle the contributions of
each subprocess. We believe that these assumptions are only sufficient and could be weakened
at the cost of a more intricate analysis.

In this section we will discuss this set of conditions by providing two examples of parameters
αij that allow to apply this result along with one counter-example.

Examples for which the conditions are fulfilled

Let us begin with an example of a two-dimensional process. In this situation, as soon as both
processes have an infinite amount of events, Conditions 1 and 2 boil down to finding indexes
k ≥ 1 and k′ ≥ 1 such that λ1(T 2

k
−
) > 0 and λ2(T 1

k′
−
) > 0. Indeed, it is then enough to consider

(τ, τ+) = (T 2
k , T

1
N(T 2

k )+1
) for (i, j) = (1, 2) and (τ, τ+) = (T 1

k′ , T 2
N(T 1

k′ )+1
) for (i, j) = (2, 1).

Example 1. Let us assume that N is a two-dimensional Hawkes process with the following
matrix for parameters αij: (

α11 α12

α21 α22

)
=

(
α11 0.0
α21 α22

)
,

such as α11 ≤ 0, α21 ≥ 0 and α22 > 0.
Both processes contain an infinite number of events as process N1 can be seen as a one-

dimensional Hawkes process and the second one has a lower-bounded intensity λ2 > µ2. Now,
since λ2(t) > 0 for all t ≥ 0, we have λ2(T 1

1
−
) > 0. Then, let us first remark that the event

times of process N1 occur independently of N2, as α12 = 0. So, for any event time T 1
ℓ of N1, the

restart times can be written as if N1 was a univariate Hawkes process (see Bonnet et al. (2021)):

T 1⋆
(ℓ) = T 1

ℓ + β−1
1 log

(
µ1 − λ1⋆(T 1

ℓ )

µ1

)
1{λ1⋆(T 1

ℓ )<0} .

For t > T 1⋆
(ℓ) small enough, both λ1(t) and λ2(t) are positive, meaning that the next event time

can come either from N1 or from N2. If we consider an infinite sequence of event times, we will
eventually observe an event T 2

k of N2 such that λ1(T 2
k
−
) > 0.

This gives a set of Hawkes processes with inhibition that verify the assumptions of Theo-
rem 4.3.1. For higher dimensions, the multiplicity of all possible connections between processes
complicates the study of general cases from a theoretical point of view. Example 2 illustrates a
case where the conditions are fulfilled by considering identically distributed processes.

Example 2. Let us consider a d-dimensional Hawkes process, as well as µ, α+, α−, β such that
for any i and for any j ̸= i:

µi = µ > 0 , αii = α− ≤ 0 ,

βi = β > 0 , αij = α+ ≥ 0 .

As each process has the same parameters for µi and βi along with the exact same interactions,
all processes are identically distributed and so in order to verify Conditions 1 and 2 it is enough
to verify them for i = 1 and j = 2.

Fulfilling both conditions amounts to verifying that, with non-zero probability, we can find
k ≥ 1 such that:

1. λ1(T 2
k
−
) > 0;
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2. T(N(T 2
k )+1) is an event from process N1.

Furthermore, let us notice that as all processes are cross-exciting, if λ1(T 2
k
−
) > 0 for a certain

k, then λ1(t) > 0 for t > T 2
k small enough, so T(N(T 2

k )+1) can come from process N1. It remains
now to verify that with non zero probability λ1(T 2

k
−
) > 0 for a certain k ≥ 1.

But the opposite would entail that almost surely, for all indexes k ≥ 1, λ1(T 2
k
−
) = 0. Yet, as

all processes are identically distributed, this means that, for all j ̸= 2, λj(T 2
k
−
) = 0 almost surely.

It would then follow that, for every i and for every j ̸= i, for all k > 1, λj(T i
k
−
) = 0 almost surely.

Let us consider T i0
k for a fixed k and i0. As each process N j for j ̸= i is then excited with the

same parameter α+ and they are identically distributed, then λj(T i0
k ) are identically distributed

and independent conditionally on history F
T

i0
k

. It follows then that the restart times associated

to T i0
k of each process are independent and identically distributed. Consequently, there is a non-

zero probability that at least two processes regenerate at roughly the same time before another
time of process N i0 (as it self-inhibits). Once that for j0, j1, λj0 and λj1 , are positive, the next
event time may come from either process, and so either λj1(T−

(N(T
i0
k )+1)

) > 0 with T
(N(T

i0
k )+1)

from process N j0 , or the inverse, which contradicts the fact that for all i, j and for all k > 1,
λj(T i

k) = 0. So for at least one pair (i, j) and one k, we must have λj(T i
k
−
) > 0 and so it has to

occur for all pairs, in particular (1, 2).

In the next section we present Example 3 of a specific set of parameters for which both
conditions are not necessarily met.

Example where the conditions are not fulfilled

Example 3. Let us consider the Hawkes process defined by the following parameters:(
µ1

µ2

)
=

(
105

0.1

)
,

(
α11 α12

α21 α22

)
=

(
1.0 1.0
−106 −106

)
,

(
β1
β2

)
=

(
1.0
10−5

)
.

The probability that the first event time T(1) is from process N1 is 105/(105 + 0.1) ≈ 1. If the
first event is indeed from process N1, then process N2 is strongly inhibited and in that case the
restart time T 2⋆

(1)
is equal to

T 2⋆
(1)

= T1 + 105 log(107) ,

which is very far from T1. As λ1 is lower-bounded by 105, the next candidate of process N1 is
roughly distributed as an exponential random variable with parameter 105 so the next event time
is with high probability of process N1. If this is the case, process N2 is further inhibited, and
with probability going exponentially quickly to 1, all next event times will come from process N1,
preventing us from granting Conditions 1 and 2.

4.3.5 Recovering the graph of interactions
The aim of this section is to describe methodologies able to estimate non-null interactions be-
tween subprocesses, which boils down to detecting parameters such that αij ̸= 0. Recovering
interactions has an interest, first, in providing a graphical interpretation of the Hawkes model,
as it describes which subprocesses are actually connected within the whole process. Moreover,
the graph of interactions can also be used as a reduction dimension tool, for instance if we focus
on the dynamic of one single subprocess, the activity of which can be impacted by a sub-network
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of surrounding processes that we want to identify, as investigated in Bonnet et al. (2022a) for
neuronal activity.

Estimating non-null interactions is a challenging topic, which has been particularly studied
for linear regression (see for instance Tibshirani (1996)). Regarding Hawkes processes with
inhibition, this is even more demanding because of the non-differentiability of the log-likelihood.
Therefore, we propose, in the subsequent sections, two post hoc techniques (i.e. after computing
the MLE estimator) not related to numerical optimization, and additionally, having the benefit
to scale easily to high-dimensional processes.

Thresholding

The first method that will be referred to as (MLE-ε) is obtained by adding a thresholding step to
the classic Maximum Likelihood Estimation (MLE). This is similar to the cumulative percentage
of total variation approach presented in Principal Component Analysis Joliffe (2002, Section
6.1.1). All absolute estimated values |α̃ij | are arranged in increasing order (|α̃(k)|)k∈{1,...,d2}. We
compute then the cumulative sums sk =

∑k
l=1 |α̃(l)| and write S := sd2 the sum of all absolute

estimated values. Then all estimations α̃(k) such that

sk < εS ,

are set to zero, for a threshold ε ∈ (0, 1). Subsequently, all non-null estimations α̃ij are then
re-estimated by maximising the log-likelihood.

The choice of an optimal threshold level ε requires a way of comparing estimations, which
is achieved thanks to the goodness-of-fit procedure described in Section 4.3.6, and which is
illustrated in Section 4.4.2.

Confidence interval

The second method is applicable when a sample (N1, . . . , Nn) of n realisations of a multivariate
Hawkes process is available. For every i, j, we average all estimations α̃ij over the realisations
N1, . . . , Nn to obtain ᾱij and then we determine a confidence interval around each estimation at
a given confidence level 1 − η. Then each estimation for which the confidence interval contains
0 is set to zero. Subsequently, all non-null estimations α̃ij are re-estimated.

In this work we consider two different confidence intervals.

• (CfE) corresponds to the empirical interval[
α(⌊ η

2n⌋), α(⌈(1− η
2 )n⌉)

]
,

where, (α(k))k∈{1,...,n} is the sequence of the sorted estimations of αij , and ⌊·⌋ and ⌈·⌉ are
respectively the floor and the ceiling functions.

• (CfSt) corresponds to [
ᾱij − t1− η

2
sn, ᾱij + t1− η

2
sn

]
,

where sn is the empirical standard deviation of the sample and t1− η
2

is the quantile of
level 1− η

2 of the Student distribution with n− 1 degrees of freedom. This corresponds to
a confidence interval obtained for normally distributed estimators. For Hawkes processes
with exclusively exciting interactions, estimations obtained through the MLE procedure
are asymptotically normal as proven in Ogata (1978, Theorem 5) and as discussed in Laub
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(2014). For processes with inhibiting interactions, asymptotic normality is still an open
question but is in all likelihood true. However, one has to be careful when using this
estimator, in particular a small number of observations could imply that the asymptotic
normality is not achieved. In practice, normality can be tested thanks to a Kolmogorov-
Smirnov test.

This method of selection through confidence intervals can be seen as testing the following
hypothesis at a confidence level 1− η for every i, j:{

H0 : αij = 0 ,

H1 : αij ̸= 0 .

We can then compute the corresponding p-value for each test and set to zero all parameters for
which the null hypothesis is not rejected. As we test d2 different hypotheses, it is essential to
incorporate multiple testing procedures. For this purpose, we choose the Benjamini-Hochberg
method, consisting in adapting the rejection threshold of each p-value. This method enables to
control the false discovery rate (FDR). If we denote V the number of rejected true null hypothesis
and R the number of rejected true alternative hypotheses, the FDR is defined as

FDR = E
[

V

R+ V

]
.

In other words, we control the expected number of true null hypotheses (i.e. parameter αij is
equal to zero) rejected by our testing method. The B-H procedure considers the ordered p-values
(p(k))k∈{1,...,d2} and compares each one to the adapted rejection threshold (1 − η) k

d2 . Then, we
determine the largest K ∈ {1, . . . , d2} such that p(K) < (1 − η)Kd2 and we reject all hypothesis
such that p(k) ≤ p(K)

4.3.6 Goodness-of-fit
As a benefit of our approach, it is possible to perform a goodness-of-fit test for assessing the
quality of estimations. This is particularly useful when choosing between several estimations
(such as those introduced before), in particular to choose an optimal level of thresholding for
the (MLE-ε) method. The closed-form expression of the compensator given in Proposition 4.3.1
enables the use of the Time Change Theorem for inhomogeneous Poisson processes Daley et al.
(2003, Proposition 7.4.IV). For any i, the sequence of transformed times (Λi(T i

k))k is a realisation
of a homogeneous Poisson process with unit-intensity if and only if (T i

k)k is a realisation of a
point process with intensity λi.

We can then define for any θ ∈ Θ the null hypothesis

Hi : “(T i
k)k is a realisation of a point process with intensity λiθi”.

The hypothesis is then tested via a Kolmogorov-Smirnov test between the empirical distribu-
tion (Λi

θ(T
i
k+1)−Λi

θ(T
i
k))k≥1 and an exponential distribution with parameter 1. We obtain then

d different tests with p-values (pi)i≥1. Using multiple testing approaches can help in determining
correctly estimated processes.

Lastly, we can obtain an additional test by considering the entire sequence of times (T(k))k≥1

and the total intensity λ. We obtain then the null hypothesis

Htot : “(T(k))k is a realisation of a point process with intensity λθ”,
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with corresponding p-value ptot. This value is obtained by way of a Kolmogorov-Smirnov test
between the empirical distribution of (Λθ(T(k+1))−Λθ(T(k)))k≥1 and an exponential distribution
with parameter 1, this time using the total compensator of the process.

In the forthcoming sections, this testing procedure is applied to several realisations of event
times, that are independent of the considered estimator. This enables to assess properly the
accuracy of estimations, without knowing the true conditional intensities. This is particularly
interesting for real-world data.

Let us mention that the goodness-of-fit procedure is not only an assessment of the overall fit
between the model and the observations but it provides also a tool to calibrate the threshold
for the (MLE-ε) method. Indeed, for each threshold level ε chosen over a grid, we compute all
p-values (one for each subprocess, one for ptot) and we choose the value of ε that maximises
the mean p-value. For the other two methods, (CfE) and (CfSt), the model selection procedure
is described in Section 4.3.5 and the goodness-of-fit is only performed afterwards in order to
establish the quality of the estimations.

4.4 Illustration on synthetic datasets

4.4.1 Simulation procedure
In order to assess the performance of the maximum likelihood estimation method, we simulate
different data by using Ogata’s thinning method (Ogata 1981). This method consists in defining
a piecewise constant function λ+ such that for any k ≥ 1 and any t ∈ [T(k), T(k+1)), λ+(t) ≥ λ(t).
For this, we define λ+ for any t ∈ [T(k), T(k+1)) as

λ+(t) =

d∑
i=1

µi +

d∑
j=1

∫ t

0

α+
ije

−βi(T(k)−s) dN j(s)

 ,

which corresponds to considering only the positive interactions.
Four different parameter sets are considered: three sets for 2-dimensional Hawkes processes

and a last one for a 10-dimensional process. Table 4.1 presents the parameters used in Dimension
2. All scenarios contain at least one negative interaction (αij < 0). Scenario (1) is a Hawkes
process where all parameters are non-null whereas Scenarios (2) and (3) are chosen to study the
performance of our methods when estimating null interactions (α12 for Scenario (2) and α21 for
Scenario (3)). All simulations have exactly 5000 event times in total.

Scenario (1) (2) (3)(
µ1

µ2

) (
0.5
1.0

) (
0.7
1.0

) (
1.2
1.0

)
(
α11 α12

α21 α22

) (
−1.9 3.0
1.2 1.5

) (
0.2 0.0
−0.6 1.2

) (
−1.0 0.1
0.0 −0.8

)
(
β1
β2

) (
5.0
8.0

) (
3.0
2.0

) (
0.3
0.5

)
Table 4.1: Parameters for simulations of two-dimensional Hawkes processes.

In order to carry out the hypothesis testing procedure, we simulate a sample of Hawkes
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processes independent from the one used for the estimation. Each testing sample contains as
many realisations as the estimation sample. All p-values presented in the chapter correspond to
the average obtained over all realisations.

4.4.2 Proposed methods and comparison to existing procedures
The main focus of this chapter is to assess the performance of the maximum likelihood estimator
to correctly detect the interacting functions of our processes without ambiguity, estimators are
denoted with a tilde: (µ̃i)i, (α̃ij)ij , (β̃i)i and (h̃ij)ij . In this chapter we propose four methods
previously introduced in Section 4.3.5:

• (MLE) The estimator obtained by minimising the opposite of the log-likelihood −
∑d

i=1 ℓ
i
t(θ)

(see Equation (4.6)). The log-likelihood is computed via Algorithm 5 and the minimisation
is done with the L-BFGS-B method (Byrd et al. 1995).

• (MLE-ε) The estimator obtained by adding a thresholding step to the previous method to
determine the non-null estimations. The value of ε is chosen such that it maximises the
mean over all p-values obtained.

• (CfE) The estimator whose support is obtained through the empirical confidence intervals.

• (CfSt) The estimator using Student distributed intervals after verification of normality of
the estimations.

The latter three methods are specially interesting for Scenarios (2) and (3) of the 2-dimensional
processes, and also for the 10-dimensional setting.

Remark. Another option considered for (MLE-ε) is to use instead the values |α̃ij/β̃i| for the
thresholding. Numerical results slightly differ between the two methods, with the retained method
showing better overall p-values.

For an informative assessment of the proposed approaches, we compare their performance
to estimation methods from the literature. However, up to our knowledge, there is no other
parametric estimation methods designed for inhibiting processes, that is for handling negative
values of αij . As a consequence, we chose to include estimation methods developed for exciting
processes, that are nonetheless able to produce negative estimations of αij . This is the case for
three popular approaches described below.

1. (Approx) The first one (Lemonnier et al. 2014) is obtained by approaching the compensator
Λi(t) (in each log-likelihood ℓit(θ)) by ∫ t

0

λi⋆(u) du .

In the case where all interactions are positive, this integral is equal to the compensator.
The difference is when interactions are negative as this integral takes into account the
negative values of the underlying intensity function. The minimisation is done in the same
way as for (MLE) using the L-BFGS-B method.

2. The other two methods minimise the least-squares loss approximation defined in Reynaud-
Bouret et al. (2014) and Bacry et al. (2020) as:

Rt(θ) =

∫ t

0

(λθ(u))
2 du− 2

t

N(t)∑
k=1

λmk

θ (T−
(k)) ,
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which is an observable approximation of ∥λθ−λ∥2t =
∫ t

0
(λθ(u)−λ(u))2 du up to a constant

term. In Bacry et al. (2020), all interactions are assumed to be positive, however the
implemented version of this method in the package tick Bacry et al. (2018) allows to
retrieve negative values. For this, we consider two different kernel functions from this
implementation:

• (Lst-sq) hij(t) = αijβije
−βijt, where βij is fixed beforehand by the practitioner. In

practice, we fix βij = βi to be consistent with our model (see Assumption 2). The only
solver in the implementation that provides negative values is BFGS, which is limited
to work with an ℓ2-penalty. The grid of values {1, 10, . . . , 106} is considered for the
regularisation constant. To obtain the best estimation for this method, we choose the
constant that minimises the relative squared error over all estimated parameters.

• (Grid-lst-sq) hij(t) =
∑U

u=1 α
u
ijβ

ue−βut, with (βu)u a fixed grid of parameters. In
our case, we choose U = d and the grid contains each parameter βi. Intuitively,
by applying an ℓ1-penalty, this method would be able to retrieve the corresponding
parameter βi for each process. However, in practice, the implementation uses BFGS as
optimiser and is limited to work with an ℓ2-penalty. As for (Lst-sq), the regularisation
parameter is chosen over the grid of values by minimising the relative squared error.

Results on bivariate Hawkes processes

We generate 25 realisations for each parameter set given in Table 4.1 and we estimate the
parameters for each individual simulation. We begin this comparison by competing the proposed
methods with both (Approx) and (Lst-sq) which are the two methods with the same kernel
functions considered in this chapter. Figure 4.3 displays the relative squared errors for each group
of parameters (baselines (µi)i, interaction terms (αij)i,j and delay factors (βi)i) by considering
vector norms.

First, we observe that delay factors (βi)i (last column of Figure 4.3) are similarly estimated
by all approaches. Let us recall that (Lst-sq) is not included in the comparison of delay factors:
since it requires to provide a value for these parameters (they are not estimated), it was given
the true values of (βi)i as input. An alternative offered by tick is to provide a grid of values,
but this approach, denoted (Grid-lst-sq), is included in the comparison at the end of the section
because of its difference with the exponential model considered here.

Then, regarding the baseline intensities (µi)i and the interaction factors (αij)ij , the proposed
methods outperform the two other approaches. In all Scenarios, (MLE-ε), (CfE) and (CfSt)
appear to perform almost identically as they retrieve the same supports and from then, the re-
estimations are the same. In Scenario (2), all estimation methods perform reasonably well. This
can be explained by the weak inhibiting effect of the interaction 1 → 2, leaving the intensity
almost always positive. The slight difference between (MLE-ε) and the confidence intervals comes
from the fact that (MLE-ε) is applied individually to each estimation so for some estimations it
does not set any values to zero.

In Scenario (1), the performance of (Approx) and (Lst-sq) is altered, in particular for the
(α̃ij)ij estimations, because the inhibiting effect is stronger than in Scenario (2). The major
changes appear in Scenario (3), where both (Approx) and (Lst-sq) obtain very high relative
errors. More precisely, they fail to explain the interactions between the two processes (see
the estimations (α̃ij)ij in the middle column of Figure 4.3), which is compensated by a wrong
estimation (µ̃i)i of baseline intensities. This is not surprising since Scenario (1), and even more
Scenario (3), were designed so that the intensity functions are frequently equal to zero, which
induces major differences between true and underlying intensities. Since (Approx) and (Lst-
sq) are both based on assuming that these two functions are almost equal, the violation of
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Figure 4.3: Boxplots of the relative squared error for each group of parameters ((µi)i, (αi,j)i,j
and (βi)i) for 25 realisations of a two-dimensional Hawkes processes. (Lst-sq) does not appear
in the last column because it is provided with the true values of (βi)i. The proposed methods
are (MLE), (MLE-ε), (CfE) and (CfSt).

this assumption causes large estimation errors. As expected, the proposed methods, which are
developed to handle such inhibiting scenarios, provide accurate estimations.

These results are confirmed by the outcomes of the goodness-of-fit test displayed in Table 4.2.
It shows indeed the averaged p-values for each scenario using both the true parameters and all
four estimations from Figure 4.3 with 25 simulations different from the ones used for estimation.
In particular, we can see that our methods obtain high p-values, being very close to those
obtained using the true parameters. Table 4.2 also highlights when parameters are incorrectly
estimated. For instance, in Scenario (1), (Approx) correctly estimate Process 2 but provides less
accurate estimations for Process 1 (the p-value is almost half the one obtained with the true
parameters), which is the one characterised by a self-inhibiting behaviour. In addition, at least
one of the proposed methods obtains the highest value for ptot in each scenario, which illustrates
the ability of these procedures to reconstruct the complete process N . Let us note that the
very low p-values obtained by (Approx) and (Lst-sq) for Scenario (3) confirm the ability of the
goodness-of-fit procedure to detect when the parameter estimations strongly differ from the true
parameters.

Lastly, let us investigate the estimations obtained via (Grid-lst-sq), which can be used in
practice as a way to estimate the parameters βi by providing a grid of possible parameters. Let
us mention that both of the previous comparisons (boxplots and p-values) cannot be done here
due to the difference in the number of parameters, but we can compare the methods in terms of
reconstructions h̃ij of the interaction functions hij . For this purpose, we analyse Figure 4.4, which
represents the estimated interaction functions h̃ij for all methods in Scenario (3). Interestingly,
we see that (Grid-lst-sq) performs similarly to (Lst-sq), while the latter is fed with all true values
(βi)i for each interaction. However, we see that (Grid-lst-sq) suffers from the same difficulties
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Scenario (1) Scenario (2) Scenario (3)
p-value p1 p2 ptot p1 p2 ptot p1 p2 ptot

True 0.492 0.438 0.430 0.535 0.468 0.479 0.510 0.623 0.338

MLE 0.440 0.442 0.398 0.483 0.461 0.485 0.549 0.638 0.357

MLE-ε
0.440 0.442 0.398 0.488 0.461 0.491 0.549 0.574 0.327CfE

CfSt

Approx 0.257 0.442 0.358 0.483 0.452 0.459 0.0 0.007 0.0
Lst-sq 0.154 0.438 0.392 0.534 0.463 0.478 0.0 0.0 0.0

Table 4.2: Average p-values for estimations of two-dimensional Hawkes processes for all scenarios.
The values are averaged over 25 simulations. In bold the p-values correspond to a rejected
hypothesis at a confidence level of 0.95.

than (Approx) and (Lst-sq), which was expected since it relies on the same unvalid assumption.
Let us note that we chose to display the results for Scenario (3) since it highlights the main
differences between the compared approaches but the reconstructions for Scenarios (1) and (2)
can be found in Appendix 4.F (Figures 4.13 and 4.14).
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Figure 4.4: Reconstruction of interaction functions hij for Scenario (3) of two-dimensional
Hawkes processes along with all estimated functions h̃ij . The real function is plotted in red
and 25 estimations are averaged for each method.

A 10-dimensional Hawkes process

A 10-dimensional Hawkes process is simulated based on a set of parameters corresponding to the
quantities (sign(αij)∥hij∥1)ij = (αij/βi)ij displayed in Figure 4.5. The chosen parameters fulfil
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Figure 4.5: Heatmap of real parameters (sign(αij)∥hij∥1)ij = (αij/βi)ij for the 10-dimensional
simulation.

the existence condition ∥ρ(S+)∥ < 1.
The corresponding estimations α̃ij and β̃i are averaged over 25 realisations and displayed

in Figure 4.6. The heatmap representation is convenient for high-dimensional processes as it
allows us to see whether the signs of each interaction are well-estimated and whether the null-
interactions are correctly detected.

In this example we decided to keep only (Approx) and (Lst-sq) as comparison methods
as these are the ones with the same parameterisation for the kernel functions. Among the
four methods considered, (Approx) is the only one that wrongly estimates the sign of some
interactions, represented by the black boxes in the second row matrix. (MLE) and (Lst-sq)
correctly retrieve the sign of each interactions but are unable to detect the null interactions: this
is not surprising since (MLE) does not contain a regularisation step and the (Lst-sq) estimator
is implemented with a ℓ2-penalty which does not provide a sparse solution. On the one hand,
(MLE-ε) is in this case quite conservative by setting a single value equal to 0 compared to (MLE).
On the other hand, both confidence intervals methods improve the number of interactions whose
sign is correctly estimated. Interestingly, we see that (CfE) sets more values equal to zero
than it should (purple boxes) whereas (CfSt) denotes the opposite effect by not detecting null
interactions (orange boxes). Overall, (CfSt) obtains the best results in terms of support recovery
and sign estimations by committing only two errors. Table 4.3 summarises the p-values for each
hypothesis as described in Section 4.3.6. All of the proposed methods obtain overall better p-
values with no particularly low values, which is not the case for (Approx) (see p4 and ptot) and
for (Lst-sq) (see p8 and p10). Although the p-values all exceed 5%, they remain substantially
smaller than those obtained with the alternative methods.

Finally, we compare the relative squared errors for each group of parameters (see Figure 4.8).
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Figure 4.6: Top row corresponds to the heatmap for each estimation method. Bottom row
corresponds to errors made with respect to real parameters from Figure 4.5. A value of 1
(orange) shows an undetected 0 (non-null estimation for αij = 0), a value of -1 (purple) shows
a non-null value set to 0 and a value of -2 (black) shows a non-null value whose sign is wrongly
estimated. Each of the compared approaches is described in Section 4.4.2.

p-value p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 ptot

True 0.437 0.608 0.435 0.517 0.534 0.45 0.43 0.47 0.533 0.509 0.464

MLE 0.451 0.619 0.399 0.466 0.506 0.464 0.424 0.386 0.45 0.483 0.434

MLE-0.05 0.454 0.622 0.392 0.466 0.505 0.427 0.418 0.392 0.495 0.482 0.432
CfE 0.424 0.532 0.393 0.528 0.532 0.301 0.444 0.427 0.516 0.505 0.439
CfSt 0.452 0.633 0.375 0.474 0.527 0.462 0.431 0.422 0.488 0.493 0.465

Approx 0.411 0.376 0.475 0.077 0.485 0.411 0.3 0.384 0.285 0.436 0.085
Lst-sq 0.422 0.63 0.344 0.456 0.416 0.439 0.411 0.096 0.579 0.157 0.423

Table 4.3: p-values for estimations of a ten-dimensional Hawkes process. The values are aver-
aged over 25 simulations. ptot corresponds to testing whether the estimated intensity function
corresponds to a multivariate Hawkes process N as defined in Section 4.3.6.

Similarly to the two-dimensional case, all proposed methods perform significantly better than
alternative approaches regarding the estimation of all parameters. In addition, it can be noticed
that inaccurate estimations of the parameters αij tend to deteriorate the estimations of µi, which
suggests an effect of compensation between these parameters. Regarding the estimator (CfSt),
which shows the best averaged performance, it can be remarked that it also exhibits a large
variance, in particular when estimating βi.

Figure 4.7 illustrates for (CfST) the ordered p-values for hypothesis H0 : αij = 0.
This can be explained by this estimator providing a very sparse solution (as seen in Figure

4.6) and therefore taking into account less observations for estimating the coefficients βi.
An important question for any inference method, especially in a high-dimensional setting, is

its computational cost. Table 4.4 shows the average estimation time (over 25 realisations), all
times being total estimation time. More precisely, for our 3 model selection methods (MLE-ε),
(CfE) and (CfSt), it takes into account the total times, including the first (MLE) estimation in
addition to the re-estimation over the support.

Although the difference between (Lst-sq) and all other methods is substantial, let us recall
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Figure 4.7: Ordered p-values corresponding to support estimation of method (CfSt). Red points
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Figure 4.8: Boxplots of the relative squared error for each group of parameters ((µi)i, (αij)i,j
and (βi)i) for 25 realisations of a ten-dimensional Hawkes processes. (Lst-sq) does not appear
in the last row because it is provided with the true values of (βi)i. The proposed methods are
(MLE), (MLE-ε), (CfE) and (CfSt).

that (Lst-sq) requires to be provided with parameters βi, which offers two numerical advantages:
it does not need to optimise for parameters βi which are the more difficult parameters to esti-
mate and it includes a pre-computation step (of exponential terms) that accelerates all internal
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MLE MLE-ε CfE CfSt Approx Lst-sq Grid-lst-sq
Computing time 87.6 178.2 147.2 152.2 51.4 1.32 47.7

Table 4.4: Average computing time in seconds for all estimation methods, averaged over 25
realisations of a ten-dimensional Hawkes process. The time shown for (MLE-ε) is the total time
of estimation for 7 different values of ε. Similarly for tick methods, the time is for 7 different
levels of penalisation (as done in the estimations of Section 4.4.2). For the (Grid-lst-sq), we
provided a search grid for βi that contains 12 values, including the true one.

computations. In order to provide a fairer comparison, we include the computing time of the
(Grid-lst-sq) method which can be considered as an alternative for estimating these parameters
when given a search grid for βi (here with 12 values, including the true parameters). As ex-
pected, the computational cost of the MLE method is higher than the alternative approaches
(Approx) and (Grid-lst-sq), designed for the linear model. It remains nevertheless that (Lst-sq)
and (Grid-lst-sq) are both implemented in a compiled language (C++), which is always faster
than an interpreted language such as that used in the proposed package (Python). However, all
computation times remain quite reasonable, even for the methods that include a selection model
step.

4.4.3 Robustness on misspecified models
In this section, we address the question of the robustness of our estimator regarding the misspec-
ification of the kernel function. More precisely, we generate a two-dimensional Hawkes process
with power-law kernels, which are commonly used in the literature (Mishra et al. 2016; Ogata
1988) as an alternative to the exponential kernel for modelling a slower convergence to zero. For
all i, j we define the power-law kernel as:

hij(t) =
αijβij

(1 + βijt)1+γ
,

with βij > 0, γ > 0 and αij ∈ R in order to allow inhibition effects. Let us remark that in the
general case each kernel function could be given a different parameter γij but here we fix the
same parameter for all interactions, which is a similar condition as Assumption 2.

We propose to investigate different scenarios in order to model different behaviours. In all
cases, we set the values of αij in order to have both excitation and inhibition effects and the
values of µi as follows: (

µ1

µ2

)
=

(
1.0
1.0

)
,

(
α11 α12

α21 α22

)
=

(
0.1 1.5
1.0 −0.5

)
.

• Scenarios γ : we set (
β11 β12
β21 β22

)
=

(
1.0 1.1
1.2 1.0

)
,

all values being similar in order to be close to Assumption 2. Then we study the effect of
parameter γ which controls how the kernel functions decrease to zero. We set

γ ∈ {2.0, 4.0, 6.0, 8.0} .
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• Scenario β : we keep the same values of µi, αij as in Scenarios γ, we fix γ = 4.0 and we
choose very different values of βi,j :(

β11 β12
β21 β22

)
=

(
1.0 2.0
0.1 1.0

)
,

so that Assumption 2 is violated and therefore the intensity function of process N2 is
frequently non-monotonous between two event times.

We expect that our estimator should adapt better to Scenarios γ (in particular large values
of γ would correspond to a fast convergence to zero) than to Scenario β.

Figure 4.9 represents the heatmap for sign(αij)∥hij∥1 = αij/γ and sign(α̃ij)∥h̃ij∥1 = α̃ij/β̃i
as well as whether the type of each interaction is correctly estimated (excitation or inhibition).
We first notice that in most cases, our method is robust enough to differentiate between exciting
and inhibiting interactions, the only errors concerning parameter α11 that is close to zero. For
Scenarios γ, we can observe as expected that the bigger differences are obtained for smaller values
of γ. Although the signs of the interactions are correctly estimated in Scenario β, we can observe
substantial errors regarding the estimations of both α21 and α22.
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Figure 4.9: Top row corresponds to the heatmap sign(αij)∥hij∥1 = αij/γ. Middle row corre-
sponds to the estimated heatmap sign(α̃ij)∥h̃ij∥1 = α̃ij/β̃i. Bottom row corresponds to errors
when estimating the nature of the interaction. A black box represents a value αij whose sign is
wrongly estimated.

Table 4.5 shows the average p-values associated with the goodness-of-fit measure presented
in Section 4.3.6. It confirms that for all Scenarios γ, the p-values are smaller for smaller values of
γ, all p-values remaining greater than 5%. However, the p-values associated with Scenario β are
always equal to zero, which means that the goodness-of-fit is able to detect that the interactions
are not correctly estimated.

To conclude, if the true model is not too far from an exponential model and Assumption 2
holds, our procedure can adapt and provide reasonable estimations. If not, our estimator cannot
adjust but we are able to detect incorrect estimations thanks to the goodness-of-fit procedure.
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p1 p2 ptot

Scenario γ

γ = 2.0 0.140 0.275 0.068
γ = 4.0 0.484 0.536 0.482
γ = 6.0 0.381 0.503 0.408
γ = 8.0 0.408 0.506 0.330

Scenario β 0.0 0.0 0.0

Table 4.5: Average p-values for estimations of two-dimensional Hawkes processes for all scenarios
in the misspecified power-law model. The values are averaged over 25 simulations. In bold the
p-values correspond to a rejected hypothesis at a confidence level of 0.95.

4.5 Application on neuronal data

4.5.1 Preprocessing and data description
In this section we present the results obtained by our estimation method applied to a collection
of 10 trials consisting in the measurement of spike trains of 223 neurons from the lumbar spinal of
a red-eared turtle. This data are first presented in Petersen et al. (2016) and then also analysed
in Bonnet et al. (2022a) to study how the activity of a group of neurons impacts the membrane
potential’s dynamic of another neuron. In particular, recovering the connectivity graph allows
to isolate a subnetwork which activity impacts the dynamics of one given neuron. Events were
registered for 40 seconds and in order to take into account eventual stationarity we only consider
the events that took place on the interval [11, 24] (see Bonnet et al. (2022a) for further details).
Among all trials, each neuron recording contains between 54 and 4621 event times. Furthermore,
we divide our samples in a training set consisting on all events in half the interval [11, 17.5] and
a test set consisting on the remaining window [17.5, 24], in particular each neuron has at least
15 event times in each set. The training sets are used for obtaining the estimations and the test
sets for performing the goodness-of-fit tests.

4.5.2 Resampling
As only ten realisations are available, this can obviously limit the performance of both confidence
intervals methods. In order to counter this problem, we perform a resampling method obtained
as follows:

1. We sample 3 realisations at random (N1, N2, N3), without replacement and by taking the
order into account. From now on, we consider that each realisation takes place in the time
interval [0, 6.5] (instead of [11, 17.5]).

2. We cumulate all 3 realisations by considering that process N1 takes place in [0, 6.5] then
process N2 in [6.5, 13] and finally N3 in [13, 19.5]. This creates a single realisation N in the
interval [0, 19.5].

This approach is proposed in Reynaud-Bouret et al. (2014, Section 3.4). In our case, we
repeat this process 20 times to obtain another sample of realisations. These new sample will
be used for both the (MLE) method (presented as (resampled-MLE)) and for both (CfE) and
(CfSt).
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4.5.3 Goodness-of-fit and multiple testing procedure
Since we are dealing with a high-dimensional setting, it is crucial to account for a multiple testing
correction which is performed through the Benjamini-Hochberg procedure as described in Section
4.3.5. In this case, the adapted rejection threshold corresponds to 0.05k

d+1 and represented in Figure
4.10 by a blue line. This is particularly useful in order to determine the best value of ε for (MLE-
ε) as we do not have prior knowledge regarding the sparsity of the neuronal connections.
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Figure 4.10: Ordered p-values for all hypothesis tests Hi and Htot. ptot appears as a cross for
each model (if there appears no cross for one given method, it means that the corresponding ptot
is equal to zero). The blue curve corresponds to the adapted rejection threshold from the B-H
procedure, so all tests whose p-value are under the line are rejected.

Figure 4.10 shows the ordered p-values for each hypothesis Hi along with hypothesis Htot

displayed with a bold cross, all total p-values also being summarised in Table 4.6.

MLE MLE-0.40 MLE-0.60 MLE-0.90 resampled-MLE CfE CfSt Diag
ptot 0.0 0.002 0.004 0.048 0.0 0.053 0.0 0.0

Table 4.6: Values of ptot for each estimation method for the neuronal dataset. In bold appear
the p-values above the rejection threshold after Benjamini-Hochberg procedure.

We first note that for most methods, the p-values ptot associated with the Htot hypothesis
are either equal to 0 or under the rejection threshold. In particular, it is the case for the MLE-ε
approach for small values of ε (i.e. weak sparsity scenarios) but as we increase the threshold ε,
the p-values appear to increase, with the best estimation being achieved for ε = 0.90.

This suggests that the simpler the model the better p-values we obtain so we decided to
include another approach, named “Diag”, consisting in setting all αij = 0 for i ̸= j. This
corresponds to a model where there exists no interaction between neurons and we keep only
self-interactions: in other words, each neuron is seen as a univariate Hawkes process with three
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parameters (µi, αii, βi). Although most hypotheses Hi are not rejected by the method, the total
p-value ptot is zero which suggests that although such a model could explain each dimension
individually, it is unable to explain the neurons’ interactions as a whole interconnected process.
Although the total p-values are generally quite low, they remain above the rejection threshold for
(MLE-0.90) and (CfE). Let us notice that the high value of the best threshold (0.90) is consistent
with the (CfE) estimator that provides an even sparser solution with 4.26% non-null interactions.

Let us also recall that the (CfSt) method relies on the assumption that the MLE estimator is
asymptotically normal. Here we have a low number of repetitions (10 trials) in a high-dimensional
setting where some neurons are rarely observed which could explain why this estimator does not
perform well. Moreover, in this context, a Kolmogorov-Smirnov test of normality is likely to
provide high p-values for such small-sized samples even for non-normal distributions.

Finally, the model that best describes the complete process N is (CfE) with the highest value
for ptot and with almost all hypotheses, including Htot, not rejected. This suggests indeed that
the estimations provided by (CfE) are the best fit for explaining the entire process as well as
each individual subprocess.

4.5.4 Estimation results
Figure 4.11 illustrates the obtained estimation for all parameters for the (CfE) method. Let
us recall that the estimation for (CfE) is obtained by using the resampled trials: the support
is determined by using the empirical quantiles confidence intervals after an estimation through
(MLE) and then all parameters are re-estimated over each trial. A single estimation is obtained
by averaging over all trials.

Although the heatmap matrix corresponding to (sign(α̃ij))ij contains only 4.26% of non-
null entries, there remain many significant interactions. Interestingly, among them we detect
all types of interactions: mutual excitation, mutual inhibition, self-excitation, self-inhibition.
This supports the relevance of carefully accounting for inhibition when developing inference
procedures.

We also notice that the diagonal contains mostly non-null entries (all but 6), which highlights
the major effect of self-interactions, among which some are negative and some are positive.
Although it is possible that different neurons actually show different patterns, some being self-
exciting and other self-inhibiting, there exists another hypothesis. We might indeed observe
a combination of effects from which we cannot distinguish: on the one hand, a self-exciting
behaviour and on the other hand, a refractory period following a spike during which a neuron
cannot spike again. This could also explain why the order of magnitude of the βi estimations,
which describe the duration until an effect vanishes, is different from a neuron to another. It
would be of great interest to propose another modelling that could account for both effects and
thereby helping us to provide additional information to support or refute this hypothesis.

Another striking phenomenon is the behaviour of neuron 13, which seems to interact with
many other neurons: it contains indeed 69% non-null receiving interactions (row) and 57% non-
null giving interactions (column). Further analysis shows that this neuron spikes only in one out
of ten trials so that it could indicate an inaccurate estimation. However, the p-value associated
with this neuron’s subprocess is not rejected by our goodness-of-fit procedure, which suggests
that the corresponding estimation is actually accurate. Therefore, this neuron could either play
central role among the whole network or be connected to an unobserved neuron with a central
role. On the opposite side, some neurons exhibit only a few connections, in particular there is one
neuron that only receives interactions without giving, while another one gives without receiving.
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Figure 4.11: Heatmap (sign(αij))ij of (CfE) estimation on 223 neurons.

4.6 Discussion

In this chapter, we proposed a methodology for estimating the parameters of multivariate expo-
nential Hawkes processes with both exciting and inhibiting effects. Our first contribution was
to provide a few sufficient conditions to ensure the identifiability of a commonly used model.
Then we developed and implemented a maximum likelihood estimator combined with a variable
selection procedure that enables to detect the significant interactions inside the whole process.
While our framework is more general than the usual linear Hawkes model, there remain two
main limitations, the first one being the exponential distribution of the kernels, the second one
the assumption that the delay factors βij only depend on the receiving process N i. If it is es-
sential to assume a parametric form for the kernel functions in order to maintain the concepts of
our approach, it would be of great interest to consider some extensions to account for potential
combined effects, as already mentioned in Section 4.5.4. It would be notably relevant to include
multi-scale effects or to consider a potential lag between an event time and its actual impact.
Regarding the assumption on the delay factors, while it is quite standard, it could be a limitation
of our approach when considering heterogeneous phenomena.

Going over this assumption would lead us to explore numerical integration methods and would
considerably increase the computational time of the estimation procedure. This is obviously
detrimental since, in practice, time sequences are increasingly abundant and large. On the other
hand, improving the computational effectiveness of estimation procedures for Hawkes processes
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is a current direction of research (Bompaire et al. 2018).
Our work focuses on the computational aspects of both maximum likelihood estimation and

variable selection. It is of natural interest to provide further theoretical study of the asymptotic
behaviour of our estimator, as done for exciting Hawkes processes (Guo et al. 2018). This work
is currently under investigation.

Let us also highlight that, because of the physical constraints of the experiment, only a
fraction of the neuronal network is observed, which raises the question of interpretability of
the estimated interactions. Indeed, the latter do not take into account the interactions with
neurons that are outside the observed network. Very recent results tackle the consistency of
estimated interactions in a partially observed network (Reynaud-Bouret et al. 2021). A necessary
condition to recover interactions in the subnetwork requires in particular to have a large number
of interactions within the full network. Regarding the neuronal application, it could be of great
interest to further investigate the interpretability of the inferred interactions and connectivity
graph in light of the aforementioned work.

4.A Proof of Lemma 4.3.1

In order to prove Lemma 4.3.1, let us first state a preliminary result.

Lemma 4.A.1. If Assumption 2 is granted, then for each i ∈ {1, . . . , d} and any k ≥ 1:

∀t ∈ [T(k), T(k+1)),

λi⋆(t) = µi +
(
λi⋆(T(k)

)
− µi)e

−βi(t−T(k)) .

Proof. Let i ∈ {1, . . . , d}. For any k ≥ 1, the underlying intensity function λi⋆ in the interval
[T(k), T(k+1)) can be written:

λi⋆(t) = µi +

d∑
j=1

Nj(t)∑
ℓ=1

αije
−βij(t−T j

ℓ ) .

This function is differentiable in the open interval (T(k), T(k+1)) and we obtain:

(λi⋆)′(t) = −
d∑

j=1

βij

Nj(t)∑
ℓ=1

αije
−βij(t−T j

ℓ ) .

By using Assumption 2 that for all j ∈ {1, . . . , d}, βij = βi ∈ R∗
+, we obtain the following

differential equation:
(λi⋆)′(t) = −βi

(
λi⋆(t)− µi

)
,

which by solving on the interval gives:

λi⋆(t) = µi +
(
λi⋆(T(k))− µi

)
e−βi(t−T(k)) .

Proof of Lemma 4.3.1. Let i ∈ {1, . . . , d} and k ≥ 1. By Lemma 4.A.1, ∀t ∈ [T(k), T(k+1)):

λi⋆(t) = µi +
(
λi⋆(T(k))− µi

)
e−βi(t−T(k)) .
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In particular, the derivative of the underlying intensity function is of opposite sign as (λi⋆(T(k))−
µi). Let us distinguish two cases, referring to Figure 4.12 for a better understanding:
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Figure 4.12: Illustration of three possible scenarios for restart times T i⋆
(k) depending on the sign

of λi⋆(T(k)) and λi⋆(T−
(k+1)) = limt→T−

(k+1)
λi⋆(t). The dotted line in the last scenario shows the

equation µi + (λi⋆(T(k)) − µi)e
−βi(t−T(k)) = 0 and the term T(k) + β−1

i log
(

µi−λi⋆(T(k))

µi

)
as its

only root.

• If λi⋆(T(k)) ≥ 0, then,

T i⋆
(k) = T(k) = min

(
T(k), T(k+1)

)
= min

(
t⋆k, T(k+1)

)
.

If (λi⋆(T(k))−µi) ≥ 0, then λi⋆ is decreasing and lower-bounded by µi. If (λi⋆(T(k))−µi) < 0
then λi⋆ is increasing and lower-bounded by zero. In both cases, for any t ∈ (T i⋆

(k), T(k+1)),
λi⋆(t) > 0 and then λi(t) = λi⋆(t).

• If λi⋆(T(k)) < 0, then
(
λi⋆
(
T(k)

)
− µi

)
< 0 so λi⋆ is strictly increasing and by continuity and

by Lemma 4.A.1, there exists a unique t⋆ > T(k) such that µi+
(
λi⋆(T(k)

)
−µi)e

−βi(t
⋆−T(k)) =

0.

We obtain:

t⋆ = T(k) + β−1
i log

(
µi − λi⋆(T(k))

µi

)
.

By denoting λi⋆(T−
(k+1)) := limt→T−

(k+1)
λi⋆(t):

– If λi⋆(T−
(k+1)) > 0, then t⋆ < T(k+1) by strict increasingness and so by definition

T i⋆
(k) = t⋆ = t⋆k. Lastly, for any t ∈ (T(k), T(k+1)), if t ∈ (T(k), T

i⋆
(k)], λ

i⋆(t) ≤ 0 and then
λi(t) = 0, while if t ∈ (T i⋆

(k), T(k+1)), λi⋆(t) > 0 and then λi(t) = λi⋆(t).
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– If λi⋆(T−
(k+1)) ≤ 0, then by strict increasingness t⋆ > T(k+1) and so T i⋆

(k) = T(k+1). In
this case, for all t ∈ (T(k), T(k+1)), λi⋆(t) < 0 so λi(t) = 0. Moreover, (T i⋆

(k), T(k+1)) = ∅
so we never have λi(t) = λi⋆(t).

Combining all scenarios achieves the proof.

4.B Proof of Proposition 4.3.1

Proof. For each i ∈ {1, . . . , d} and ∀t ≥ 0, with convention T(0) = 0 and T i⋆
(0) = 0:

Λi(t) =

∫ t

0

λi(u) du =

N(t)∑
k=0

∫ T(k+1)

T(k)

λi(u)1u≤t du

=

N(t)∑
k=0

∫ T(k+1)

T i⋆
(k)

λi⋆(u)1u≤t du ,

where the last equation comes from Lemma 4.3.1. Then, for k = 0:∫ T(1)

T i⋆
(0)

λi⋆(u)1u≤t du =

∫ T(1)

T i⋆
(0)

µi1u≤t du

= µi min(t, T(1)) ,

and for every k ∈ {1, . . . , N(t)}, by Lemma 4.A.1:∫ T(k+1)

T i⋆
(k)

λi⋆(u)1u≤t du

=

∫ T(k+1)

T i⋆
(k)

[
µi +

(
λi⋆(T(k)

)
− µi)e

−βi(t−T(k))
]
1u≤t du

=µi

(
min(t, T(k+1))− T i⋆

(k)

)
+ β−1

i

(
λi⋆(T(k))− µi

)(
e−βi(T

i⋆
(k)−T(k)) − e−βi(min(t,T(k+1))−T(k))

)
.

4.C Proof of Theorem 4.3.1

Proof. We only need to prove that if λiθi(t | Ft) = λiθ′
i
(t | Ft) a.e. for every i ∈ {1, . . . , d} then

θ = θ′. In this proof, both intensities are considered with respect to the same filtration Ft so we
will omit it from the rest of the proof.

Let θ, θ′ ∈ Θ. Let us assume that λiθi(t) = λiθ′
i
(t) for all t < T . In order to prove equality

between the two parameters we will first prove that µi = µi
′, then βi = β′

i and lastly that
αij = α′

ij for every i, j.
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• For any i, as λiθi(t) = λiθ′
i
(t) a.e., then

Λi
θi(T(1)) = Λθ′

i
(T(1))

=⇒ µiT(1) = µi
′T(1)

=⇒ µi = µi
′ .

• For any i, let us choose T(k+1) such that it is an event of process N i. As

P(T(k+1) is an event of N i | FT−
(k+1)

) =
λiθi(T

−
(k+1))

λθ(T
−
(k+1))

,

then λiθi(T
−
(k+1)) > 0. By definition of T i⋆

(k),θ,

T i⋆
(k),θ < T(k+1) a.s. .

Furthermore, λiθi(t) = 0 for t ∈ (T(k), T
i⋆
(k),θi

) and λiθi(t) > 0 for t ∈ (T i⋆
(k),θi

, T(k+1)).
Then, as we assumed that λiθi(t) = λiθ′

i
(t) a.e., we can conclude that T i⋆

(k),θi
= T i⋆

(k),θ′
i
.

By differentiating the intensity functions on the interval (T i⋆
(k),θi

, T(k+1)) as in the proof of
Lemma 4.3.1 we obtain:

(λiθi)
′(t) = (λiθ′

i
)′(t) a.e.

=⇒ − βi(λ
i
θi(t)− µi) = −β′

i(λ
i
θ′
i
(t)− µi) a.e.

=⇒ (βi − β′
i)(λ

i
θi(t)− µi) = 0 a.s.

=⇒
∫ T(k+1)

T i⋆
(k),θ

(βi − β′
i)(λ

i
θi(t)− µi) dt = 0

=⇒ (βi − β′
i)

∫ T(k+1)

T i⋆
(k),θ

(λiθi(t)− µi) dt = 0 .

Additionnally, |λiθi(t) − µi| > 0 a.s. for all t ∈ (T i⋆
(k),θi

, T(k+1)) as λiθi is monotone and
converges to µi. Then it follows that the integral is non-zero and so βi = β′

i.

• Let us prove the equality αij = α′
ij . By the assumption made on the event times, for any

i, j with i ̸= j, there exists two event times τ < τ+ with τ an event time from process Nj

and τ+ an event time from process Ni such that:

1. λiθi(τ
−) > 0;

2. there are only events of process N j in the interval [τ, τ+).

Let τ and τ+ be two such event times. As a reminder, T(N(τ)−1) corresponds to the event
time before τ and similarly for τ+. For t ∈ [T(N(τ)−1), τ), as λiθi(t) = λiθ′

i
(t) a.e. and by

Condition 1:

λi⋆θi(τ
−) = λi⋆θ′

i
(τ−) .
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By using the following equalities (proven in the previous points of the proof)

µi = µi
′ , βi = β′

i ,

T i⋆
(N(τ)−1),θi

= T i⋆
(N(τ)−1),θ′

i
,

it follows that

λi⋆θi(τ
−) = λi⋆θ′

i
(τ−)

=⇒
d∑

l=1

αil

∑
T l
k<τ

e−βi(τ−T l
k) =

d∑
l=1

α′
il

∑
T l
k<τ

e−βi(τ−T l
k)

=⇒
d∑

l=1

(αil − α′
il)A

l = 0 , (4.7)

where
Al =

∑
T l
k<τ

e−βi(τ−T l
k) .

We can then write Equation (4.7) by replacing τ by τ+ as λiθi(τ
−
+ ) > 0 because τ+ is an

event time of process N i. We obtain then

d∑
l=1

(αil − α′
il)B

l = 0 , (4.8)

where
Bl =

∑
T l
k<τ+

e−βi(τ+−T l
k) .

By definition of event times τ and τ+, all events on the interval [τ, τ+) are from process
N j so we obtain for all l ̸= j,

Bl = Ale−βi(τ+−τ) .

For l = j,
Bj = Aje−βi(τ+−τ) +

∑
τ≤T j

k<τ+

e−βi(τ+−T j
k ) ,

where the second term of the right hand side is positive as interval [τ, τ+) contains at least
one event, τ , from process N j . We can rewrite then Equation (4.8):

d∑
l=1

(αil − α′
il)B

l = 0

=⇒ e−βi(τ+−τ)
d∑

l=1

(αil − α′
il)A

l

+ (αij − α′
ij)

∑
τ≤T j

k<τ+

e−βi(τ+−T j
k ) = 0 .
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By Equation (4.7), the first term is null and the second sum is non-zero as interval [τ, τ+)
contains at least an event from process N j . It follows that:

(αij − α′
ij)

∑
τ≤T j

k<τ+

e−βi(τ+−T j
k ) = 0

=⇒ (αij − α′
ij) = 0 .

It follows that for every j ̸= i, αij = α′
ij . It remains to prove that αii = α′

ii. For this, let
T i
2 be the second event time of process N i. We can the write the equality

λi⋆θi(T
i
2)− λi⋆θ′

i
(T i

2) = 0 ,

=⇒
d∑

l=1

(αil − α′
il)

∑
T l
k<T i

2

e−βi(τ−T l
k) = 0 ,

=⇒ (αii − α′
ii)

∑
T i
k<T i

2

e−βi(τ−T l
k) = 0 ,

as for j ̸= i, αij = α′
ij . The sum is non-zero as it contains the event T i

1 and so we obtain
αii = α′

ii.

This achieves the proof.

4.D Proof of Corollary 4.3.1

Proof. For all i ∈ {1, . . . , d}, θ ∈ Θ and k ∈ N∗,

log λiθi(T
i−
k ) =−∞1λi

θi
(T i−

k )=0

+ log λiθi(T
i−
k )1λi

θi
(T i−

k )>0

=−∞1λi⋆
θi

(T i−
k )≤0

+ log λi
⋆

θi(T
i−
k )1λi⋆

θi
(T i−

k )>0

= log λi
⋆

θi(T
i−
k )

= log lim
t→T i−

k

λi
⋆

θi(t).

Now, for k = 1, λi
⋆

θi
(T i−

k ) = µi, and for k ≥ 2, let us note q = N(T i
k)− 1. Then,

[T(q), T(q+1)) = [T(N(T i
k)−1), T(N(T i

k))
) = [Si

k, T
i
k) ,

and by Lemma 4.A.1, ∀t ∈ [T(q), T(q+1)):

λi⋆θ (t) = µi +
(
λi⋆θi(T(q))− µi

)
e−βi(t−T(q))

= µi +
(
λi⋆θi(S

i
k)− µi

)
e−βi(t−Si

k) .
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Thus,

lim
t→T i−

k

λi
⋆

θi(t) = lim
t→T−

(q)

λi
⋆

θi(t)

= µi +
(
λi⋆θi(S

i
k)− µi

)
e−βi(T

i
k−Si

k) .

To conclude, by Equation (4.3),

ℓit(θi) =

Ni(t)∑
k=1

log λiθi(T
i−
k )− Λi

θi(t)

= log λiθi(T
i−
1 ) +

Ni(t)∑
k=2

log λiθi(T
i−
k )− Λi

θi(t)

= logµi +

Ni(t)∑
k=2

log
(
µi +

(
λi⋆θi(S

i
k)− µi

)
e−βi(T

i
k−Si

k)
)

− Λi
θi(t) .

4.E Algorithm for computing the log-likelihood

This section presents Algorithm 5 for computing the log-likelihood ℓt(θ) by leveraging the results
from Corollary 4.3.1.

4.F Reconstructed interaction functions for synthetic data

This section presents the reconstruction of interaction functions hij along with the estimated
functions h̃ij from the two-dimensional Hawkes processes simulations as described in Section
4.4.2. Figure 4.13 and Figure 4.14 correspond respectively to the estimations for Scenarios (1)
and (2) from Table 4.1.
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Algorithm 5: Computation of the log-likelihood ℓt(θ) of a multivariate exponential
Hawkes process.
Input Parameters µi, αij , βi for i, j ∈ {1, . . . , d}, list of event times and marks
(T(k),mk)k=1:N(t);

Initialisation Initialise for all i, Λi
k = µiT(1), λi⋆(T−

(k)) = µi, λi⋆k = µi + αim1
and

ℓt(θ) = log(λm1⋆(T−
(k)))−

∑d
i=1 Λ

i
k;

for k = 2 to N(t) do
Compute for all i, T i⋆

(k−1) = min
(
T(k−1) + β−1

i log
(

µi−λi⋆
k

µi

)
1{λi⋆

k <0}, T(k)

)
;

Compute for all i,
Λi
k = µi(T(k) − T i⋆

(k−1)) + β−1
i (λi⋆k − µi)(e

−βi(T
i⋆
(k−1)−T(k−1)) − e−βi(T(k)−T(k−1)));

Compute for all i, λi⋆(T−
(k)) = µi + (λi⋆k − µi)e

−βi(T(k)−T(k−1));

Update ℓt(θ) = ℓt(θ) + log(λmk⋆(T−
(k)))−

∑d
i=1 Λ

i
k;

Compute for all i, λi⋆k = λi⋆(T−
(k)) + αimk

;
end

Compute for all i, T i⋆
(N(t)) = min

(
T(N(t)) + β−1

i log
(

µi−λi⋆
k

µi

)
1{λi⋆

k <0}, t
)
;

Compute for all i,
Λi
k =

[
µi(t− T i⋆

(N(t))) + β−1
i (λi⋆k − µi)(e

−βi(T
i⋆
N(t)−T(N(t))) − e−βi(t−T(N(t))))

]
1{t>T i⋆

(N(t))
};

Update ℓt(θ) = ℓt(θ)−
∑d

i=1 Λ
i
k;

return Log-likelihood ℓt(θ).
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Figure 4.13: Reconstruction of interaction functions hij for Scenario (1) of two-dimensional
Hawkes processes along with all estimated functions h̃ij . The real function is plotted in red and
25 estimations are averaged for each method.
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Figure 4.14: Reconstruction of interaction functions hij for Scenario (2) of two-dimensional
Hawkes processes along with all estimated functions h̃ij . The real function is plotted in red and
25 estimations are averaged for each method.
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Spectral analysis for the inference of noisy

Hawkes processes

Classic estimation methods for Hawkes processes rely on the assumption that observed event
times are indeed a realisation of a Hawkes process, without considering any potential perturbation
of the model. However, in practice, observations are often altered by some noise, the form of
which depends on the context. It is then required to model the alteration mechanism in order
to infer accurately such a noisy Hawkes process. While several models exist, we consider, in
this work, the observations to be the indistinguishable union of event times coming from a
Hawkes process and from an independent Poisson process. Since standard inference methods
(such as maximum likelihood or Expectation-Maximisation) are either unworkable or numerically
prohibitive in this context, we propose an estimation procedure based on the spectral analysis of
second order properties of the noisy Hawkes process. Novel results include sufficient conditions
for identifiability of the ensuing statistical model with exponential interaction functions for both
univariate and bivariate processes. Although we mainly focus on the exponential scenario, other
types of kernels are investigated and discussed. A new estimator based on maximising the spectral
log-likelihood is then described, and its behaviour is numerically illustrated on synthetic data.
Besides being free from knowing the source of each observed time (Hawkes or Poisson process),
the proposed estimator is shown to perform accurately in estimating both processes.
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5.1 Introduction

Hawkes processes, introduced in Hawkes (1971), are a class of point processes that have been
originally used to model self-exciting phenomena and more recently other types of past-dependent
behaviours. Their fields of applications are wide and include for instance seismology (Ogata 1988;
Ogata 1998), neuroscience (Chornoboy et al. 1988; Lambert et al. 2018), criminology (Olinde
et al. 2020), finance (Embrechts et al. 2011; Bacry et al. 2015) and biology (Gupta et al. 2018), to
mention a few. Consequently, there has been a deep focus on estimation techniques for Hawkes
processes. Among them, let us mention maximum likelihood approaches (Ogata 1978; Ozaki
1979; Guo et al. 2018), methods of moments (Da Fonseca et al. 2013), least-squares contrast
minimisation (Reynaud-Bouret et al. 2014; Bacry et al. 2020), Expectation-Maximisation (EM)
procedures (Lewis et al. 2011), and methods using approximations through autoregressive models
(Kirchner 2017).

All of these methods are based on the assumption that the history of the process has been
accurately observed, although this information is partial or noised in many contexts, in particular
due to measurement or detection errors. Different models, described notably in Lund et al.
(2000), have been proposed to handle such errors for spatial point processes, with inference
methods based on approximating the likelihood depending on each noise scenario. The first
scenario, called displacement, is when the event times are observed with a shift. If deconvolution
methods to recover the unnoised process are standard approaches for simpler point processes
such as Poisson processes (see for instance Antoniadis et al. (2006) and Bonnet et al. (2022b)
or the review by Hohage et al. (2016)), the literature for Hawkes processes remains scarce and
consists of the work of Trouleau et al. (2019) where the event times are observed with a delay
and the work of Deutsch et al. (2020) where the shift follows a Gaussian distribution. The
latter also explores the framework where some event times are undetected, which is similar to
that studied in Mei et al. (2019). This setting can either be referred to as thinning when the
observations are randomly missing, or censoring when complete regions are unobserved. The last
scenario, called Superposition of ghost points by Lund et al. (2000), is the focus of this chapter
and describes situations where additional points are coming from an external point process,
in our case a Poisson process. A real-world application that motivated this work comes from
spike trains analysis in neuroscience: the membrane potential, which is a continuous signal, is
recorded and when it exceeds a certain threshold, one considers that an event time, called a
spike, occurred. However, since the original signal is noised, it is possible to detect spikes that
do not correspond to real events. Regarding inference of such a noisy process, let us highlight
that exact likelihood approaches are intractable due to the unknown origin of each occurrence
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(Hawkes process or noise process) while methods based on inferring this missing information, for
instance Expectation-Maximisation algorithms, are computationally too demanding.

Inspired by the work of Cheysson et al. (2022) when the event times of a Hawkes process are
aggregated, we turn to spectral analysis (Section 5.2.1) to propose a novel estimation procedure
that allows to infer the noisy Hawkes process. On the way, we present a general characterisation
of the Bartlett spectrum of the superposition of two independent processes (Section 5.2.2) and
identifiability results of the statistical model in the univariate (Section 5.3) and the bivariate
(Section 5.4) settings. Inference in these two settings is numerically illustrated in Section 5.5.
Before starting, we present the mathematical setting (Section 5.1.1) and review the references
related to spectral approaches (Section 5.1.2).

5.1.1 Mathematical setting
LetH = (H1, . . . ,Hd) be a stationary multivariate Hawkes process on R defined by its conditional
intensity functions λHi (i ∈ {1, . . . , d}): for all t ∈ R,

λHi (t) = µi +

d∑
j=1

∫ t

−∞
hij(t− s)Hj(ds) = µi +

d∑
j=1

∑
T

Hj
k ≤t

hij(t− T
Hj

k ) , (5.1)

where µi > 0 is the baseline intensity of process Hi, hij : R → R≥0 is the interaction or kernel
function describing the effect of process Hj on process Hi, and (T

Hj

k )k≥1 denotes the event times
of Hj .

By defining the matrix S = (∥hij∥1)1≤i,j≤d, where

∥hij∥1 =

∫ +∞

−∞
hij(t) dt ,

the stationarity condition ofH reduces to controlling the spectral radius of S: ρ(S) < 1 (Brémaud
et al. 1996).

The goal of this work is to study a noisy version of the Hawkes process where the sequences
of event times (TH1

k )k≥1, . . . , (THd

k )k≥1 of H are contaminated by the event times from another
process P . Since the latter process is aimed at modeling an external noise mechanism due to
errors in the detection of event times, it is naturally assumed that each subprocess of H is
perturbed uniformly with the same level of noise, such that P is chosen to be a multivariate
Poisson process with same intensity across subprocesses. Formally, let P = (P1, . . . , Pd) be a
multivariate homogeneous Poisson process on R, supposed to be independent from H, where
each univariate process Pi has the same intensity λ0 > 0. We note the event times (TPi

k )k≥1 (i ∈
{1, . . . , d}). We consider then the point process N = (N1, . . . , Nd) defined as the superposition
of H and P (Definition 5.2.1): the sequence of event times (TNi

k )k≥1 of Ni (i ∈ {1, . . . , d}) is the
ordered union of (THi

k )k≥1 and (TPi

k )k≥1.
Throughout this chapter we will refer to N as the noisy Hawkes process, and it will be

assumed that event times of N are observed without knowing their origin (Hawkes or Poisson
process). Our goal is to estimate both processes (i.e. the baselines µi, the kernels hij and the
shared Poisson intensity λ0) from the sole observation of (TNi

k )k≥1, i ∈ {1, . . . , d}.
Inference procedures for point processes often leverage the intensity functions in order to

devise maximum likelihood and method of moment estimators (Ogata 1988; Ozaki 1979; Da
Fonseca et al. 2013). Here, the process of interest N being a superposition of two independent
point processes, the intensity of each subprocess Ni reads (for any integer i ∈ {1, . . . , d}): for all
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t ∈ R,

λNi (t) = λ0 + µi +

d∑
j=1

∫ t

−∞
hij(t− s)Hj(ds) . (5.2)

However, it appears from Equation (5.2) that usual estimators cannot be designed from intensity
functions λN1 , . . . , λNd since they are based on H, which is indistinguishable from P in our setting.

In order to estimate the Hawkes and the Poisson components of N , we propose to leverage the
spectral analysis of point processes, recently advocated by Cheysson et al. (2022) for inference
of aggregated Hawkes processes. It consists in considering, for a multivariate point process, its
matrix-valued spectral density function, denoted f : R → Cd×d, which is related to second-order
measures (Bartlett 1963). Given some observed times (TN1

k )k≥1, . . . , (TNd

k )k≥1, (in a prescribed
time window [0, T ]), the spectral density is linked to cross-periodograms, defined for all pairs
(i, j) ∈ {1, . . . , d}2 and all ω ∈ R by:

ITij(ω) =
1

T

Ni(T )∑
k=1

Nj(T )∑
l=1

e−2πiω(T
Ni
k −T

Nj
l ) , (5.3)

where Ni(t) = Ni([0, t)). Indeed, considering the matrix-valued function IT : ω ∈ R 7→
(ITij(ω))1≤i,j≤d, the aforementioned link is to be understood as IT (ω) (for all ω ∈ R) being
asymptotically distributed according to a complex Wishart distribution with one degree of free-
dom and scale matrix f(ω) (Tuan 1981; Villani et al. 2022). In particular, this implies that
E[IT (ω)] = f(ω). Moreover, it is noteworthy that the periodogram IT (ω) can be computed
regardless of knowing the source of the event times. This paves the way for estimation.

As it happens, in the scope of statistical inference, a parametric model for the matrix-valued
spectral density function is considered:

P =
{
fNθ : R → Cd×d, θ = (µ, γ, λ0) ∈ Θ

}
,

where γ is a parameter that characterises the interaction functions. Then, for ωk = k/T (k ∈
{1, 2, . . . }), it can be shown that (IT (ωk))k≥1 are asymptotically independent, leading to the
approximate spectral log-likelihood (Brillinger 2012; Düker et al. 2019; Villani et al. 2022):

ℓT (θ) = − 1

T

M∑
k=1

{
log
(
det
(
fNθ (ωk)

))
+ tr

(
fNθ (ωk)

−1IT (ωk)
)}

, (5.4)

where det and tr are respectively the determinant and trace of matrices. Then, the so-called
Whittle (or spectral) estimator fN

θ̂
of f (Whittle 1952) is obtained for θ̂ ∈ Θ such that

θ̂ ∈ argmax
θ∈Θ

ℓT (θ) .

5.1.2 Related works
The spectral analysis of point processes was introduced in Bartlett (1963) and extended to
2-dimensional point processes in Bartlett (1964). Subsequent research works focusing on the
theoretical properties of the Bartlett spectrum include Daley (1971), Daley et al. (2003), and
Tuan (1981) for temporal settings and Mugglestone et al. (1996), Mugglestone et al. (2001), and
Rajala et al. (2023) for spatial contexts.

Despite this, practical applications remain scarcer in the literature. Adamopoulos (1976)
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studies earthquake arrivals through the analysis of Hawkes processes and Karavasilis et al. (2007)
analyses the cross-correlation of bivariate point processes in the context of muscular stimulation.

In a recent contribution by Cheysson et al. (2022), the authors employ the spectral analysis
of point processes to infer an aggregated Hawkes process. More precisely, the observations are
assumed to come from a standard Hawkes process but only the counts of events on fixed intervals
are available. By leveraging the properties of the Bartlett spectrum, they propose an estimator
obtained by means of maximisation of the spectral log-likelihood.

The main advantage of the spectral approach is its obvious ability to handle different kinds of
partial observations. That is why we propose an inference procedure for noisy Hawkes processes
based on Bartlett’s spectral density.

Spectral results concerning the Hawkes model are built on the linearity of the intensity func-
tion along with its branching properties. The first spectral analysis of linear Hawkes processes
appears in the original paper Hawkes (1971) and was then developed in Daley et al. (2003)
in both univariate and multivariate contexts. Explicit expressions of the spectral density of a
Hawkes process are available as long as the Fourier transform of the kernel functions are known,
which allows to work with a wide array of parametrisations.

In this chapter, we mainly focus on studying identifiability of the statistical model with the
classic exponential kernel (and also give insights about identifiability with other kernels). We
subsequently derive a parametric inference procedure for estimating the parameters of a process
composed of the superposition of a linear Hawkes process and a homogeneous Poisson process.

5.2 Spectral analysis

5.2.1 The Bartlett spectrum
In this section, we formally introduce the concept of matrix-valued spectral measure Γ : R →
Cd×d for a multivariate stationary point process N = (N1, . . . , Nd). This is an extension of the
Bartlett spectrum introduced by Bartlett (1963) for the analysis of univariate point processes.
Let S be the space of real functions on R with rapid decay (Daley et al. 2003, Chapter 8.6.1):

S =

{
f ∈ C∞,∀k ∈ {1, 2, . . . },∀r ∈ {1, 2, . . . }, sup

x∈R

∣∣∣xrf (k)(x)∣∣∣ <∞
}
,

where C∞ is the set of smooth functions from R to R and f (k) is the kth derivative of f ∈ C∞.
Then, the Bartlett spectrum ofN is the matrix-valued function ΓN : ω ∈ R 7→ (ΓN

ij (ω))1≤i,j≤d ∈
Cd×d, such that for all 1 ≤ i, j ≤ d, ΓN

ij is a measure on R verifying (Daley et al. 2003, Equation
8.4.13):

∀(φ,ψ) ∈ S × S : cov

(∫
R
φ(x)Ni(dx),

∫
R
ψ(x)Nj(dx)

)
=

∫
R
φ̃(ω)ψ̃(−ω) ΓN

ij (dω) ,

where for all f ∈ S, f̃ : R → C denotes the Fourier transform of f :

∀ω ∈ R : f̃(ω) =

∫
R
f(x)e−2πixω dx .

If, for all 1 ≤ i, j ≤ d, the measure ΓN
ij is absolutely continuous, we can define the matrix-

valued spectral density function of N , denoted fN : R → Cd×d, such that for all ω ∈ R,
fN (ω) = (fNij (ω))1≤i,j≤d with ΓN

ij (dω) = fNij (ω) dω.
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From a practical point of view, the spectral density fN can be derived from the reduced
covariance densities. Let Bc

R be the collection of all bounded Borel sets on R and ℓR : Bc
R → R≥0

the Lebesgue measure on R. For all i ∈ {1, . . . , d}, the first moment measure of process Ni is
defined as A ∈ Bc

R 7→ E[Ni(A)] and, by stationarity of the process, it comes:

∀A ∈ Bc
R : E[Ni(A)] = mN

i ℓR(A) ,

where mN
i = E[Ni([0, 1))] is the mean intensity of process Ni. Then, for all (i, j) ∈ {1, . . . , d}2

the second order moment measure MN
ij : Bc

R × Bc
R → R≥0 is defined by (Daley et al. 2003,

Section 5.4):

∀(A,B) ∈ Bc
R × Bc

R : MN
ij (A,B) = E[Ni(A)Nj(B)] =

∫
A×B

MN
ij (dx, dy) .

Now, as the process N is stationary, MN
ij can be decomposed in a product of ℓR and a so-called

reduced measure M̆N
ij : Bc

R → R≥0, such that for any bounded measurable function g : R2 → R
with bounded support (Daley et al. 2003, Equation 8.1.1a):∫

R2

g(x, y)MN
ij (dx, dy) =

∫
R

∫
R
g(x, x+ u) ℓR(dx) M̆

N
ij (du) , (5.5)

which leads to the definition of the reduced covariance measure C̆N
ij : Bc

R → R≥0:

∀B ∈ Bc
R : C̆N

ij (B) = M̆N
ij (B)−mN

i m
N
j ℓR(B) . (5.6)

Since the right-hand side is the difference of two positive, positive-definite measures (Daley et al.
2003, Section 8.6), we can define the Fourier transform of C̆ij as the difference of their Fourier
transforms (see for example (Pinsky 2008, Equation 5.2.1) for the Fourier transform of a measure).
The resulting quantity comes out to correspond exactly to the spectral density function fNij :

∀ω ∈ R : fNij (ω) =

∫
R
e−2πixω M̆N

ij (dx)−mN
i m

N
j δ(ω) , (5.7)

where δ is the Dirac delta function.

5.2.2 Superposition of processes and noisy Hawkes process
The model we study considers the superposition of two point processes that we define as follows.

Definition 5.2.1 (Superposition of processes). Let X and Y be two independent and stationary
multivariate point processes with same dimension d. The superposition of X and Y , denoted
N = X + Y , is the stationary multivariate point process defined for any integer 1 ≤ i ≤ d as:

∀A ∈ Bc
R : Ni(A) = Xi(A) + Yi(A).

It comes from the definition that if X and Y have respectively event times (TX1

k )k≥1, . . . ,
(TXd

k )k≥1 and (TY1

k )k≥1, . . . , (TYd

k )k≥1, the sequences of event times ofN = X+Y are the ordered
unions of (TX1

k )k≥1 and (TY1

k )k≥1 up to (TXd

k )k≥1 and (TYd

k )k≥1. In addition, Proposition 5.2.1
below states that the spectral density of N can be obtained easily from those of X and Y .

Proposition 5.2.1. Let X and Y be two independent and stationary multivariate point processes
with same dimension d, admitting respective spectral densities fX and fY .
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Then N = X + Y admits a matrix-valued spectral density function fN and

fN = fX + fY . (5.8)

Proof. The proof is given in Appendix 5.A.

We are now ready to define the noisy Hawkes model, which is the superposition of a Hawkes
process and a homogeneous Poisson process.

Definition 5.2.2 (Noisy Hawkes process). Let H be a multivariate Hawkes process and P =
(P1, . . . Pd) be a multivariate homogenous Poisson process independent from H and with common
intensity λ0 > 0 (i.e. for any integer 1 ≤ i ≤ d, Pi is a univariate Poisson process with constant
intensity λ0). The superposition N = H + P is called a noisy Hawkes process.

Let us remark that, since the process P is aimed at modeling some kind of background noise,
it is naturally assumed that subprocesses of P share the same intensity λ0. However, if identi-
fiability results from the forthcoming sections are specific to this assumption, the presentation
done in this section can be trivially extended to a multivariate Poisson process with different
intensities.

Now, let us recall that we aim at analysing the process N = H + P through an observation
of event times (TN1

k )k≥1, . . . , (TNd

k )k≥1 with the inability of distinguishing between the times
of H and P . To do so from a statistical estimation perspective, we leverage the spectral log-
likelihood (Equation (5.4)), which makes use of the spectral density of N . The latter can be
computed thanks to Proposition 5.2.1 and Example 8.3(c) from Daley et al. (2003). Indeed, let
h̃ : R → Cd×d be the matrix-valued Fourier transform of the interaction functions:

∀w ∈ R : h̃(ω) =
(
h̃ij(ω)

)
1≤i,j≤d

,

under stationarity conditions, the spectral density fH of the Hawkes process H (defined as in
Equation (5.1)) is (Daley et al. 2003, Equation (8.3.11)):

∀w ∈ R : fH(ω) =
(
Id − h̃(ω)

)−1

diag
(
mH

) (
Id − h̃(−ω)T

)−1

, (5.9)

where Id is the identity matrix of dimension d and diag
(
mH

)
is the diagonal matrix formed by

the vector of the mean intensities:m
H
1
...

mH
d

 =
(
Id − h̃(0)

)−1

µ1

...
µd

 .

Moreover, since the homogeneous Poisson process P (with common intensity λ0) is a Hawkes
process with null interactions, its spectral density fP results easily from Equation (5.9):

∀ω ∈ R : fP (ω) = λ0Id ,

which leads to the spectral density of N :

∀w ∈ R : fN (ω) = fH(ω) + λ0Id , (5.10)

with fH expressed in Equation (5.9). Given this result, the inference procedure consists in
maximising the spectral log-likelihood described in Equation (5.4).
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In the forthcoming sections, we focus on this statistical estimation problem in low-dimensional
settings (d = 1 and d = 2) and provide identifiability results when interactions are exponential.

5.3 The univariate noisy Hawkes process

5.3.1 General setting
Let us start with univariate processes (d = 1). In this case, Equation (5.10) simplifies, as stated
in Corollary 5.3.1.

Corollary 5.3.1. Let N be a noisy Hawkes process defined by the superposition of a stationary
Hawkes process H (with baseline intensity µ > 0 and kernel function h : R → R≥0) and an
independent homogeneous Poisson process P (with constant intensity λ0 > 0). Then the spectral
density fN of N reads:

∀ω ∈ R, fN (ω) =
µ

(1− ∥h∥1)
∣∣∣1− h̃(ω)

∣∣∣2 + λ0 .

Proof. This is straightforward from Equations (5.9) and (5.10). See also Daley et al. (2003,
Example 8.2(e)) for the spectral density of a univariate exciting Hawkes process.

The estimation procedure also simplifies since the periodogram of N and the spectral log-
likelihood (see Equations (5.3) and (5.4)) respectively read:

∀ω ∈ R, IT (ω) =
1

T

∣∣∣∣∣∣
N(T )∑
k=1

e−2πiωTN
k

∣∣∣∣∣∣
2

,

where (TN
k )k≥1 is the sequence of event times of the noisy Hawkes process N , and:

∀θ ∈ Θ, ℓT (θ) = − 1

T

M∑
k=1

(
log
(
fNθ (ωk)

)
+
IT (ωk)

fNθ (ωk)

)
. (5.11)

As explained in Section 5.1.1, the Whittle estimator θ̂ is then obtained by maximising the function
ℓT . In the next section, the exponential parametric model Q for fN is described and analysed.

5.3.2 Exponential model
Let us consider the classic exponential kernel for the Hawkes process H:

∀t ∈ R : h(t) = αβe−βt1t≥0 , (5.12)

with 0 < α < 1 and β > 0. The kernel parameter is thus γ = (α, β) and the statistical model for
a univariate noisy Hawkes process becomes:

Q =
{
fNθ : R → C, θ = (µ, α, β, λ0) ∈ R>0 × (0, 1)× R>0 × R>0

}
.

The exponential kernel parametrisation has been widely studied from an inference point of
view (see for instance Ozaki (1979) and Bacry et al. (2016)). In particular, its Fourier transform
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is:
∀ω ∈ R : h̃(ω) =

αβ

β + 2πiω
, (5.13)

and the spectral density fH of a univariate Hawkes process with baseline intensity µ > 0 and
exponential kernel is (Hawkes 1971):

∀ω ∈ R : fH(ω) = mH

(
1 +

β2α(2− α)

β2(1− α)2 + 4π2ω2

)
, where mH =

µ

1− α
.

It results that the spectral density fNθ ∈ Q of a univariate noisy Hawkes process is:

∀ω ∈ R : fNθ (ω) =

(
µ

1− α
β2α(2− α)

)
1

β2(1− α)2 + 4π2ω2
+

(
µ

1− α
+ λ0

)
. (5.14)

Now, we should be ready for implementing the inference procedure based on maximising the
spectral log-likelihood as expressed in Equation (5.11). However, it appears that the model Q,
as currently defined, is not identifiable (see Proposition 5.3.1). Hopefully, this model becomes
identifiable when restricted to only three parameters, thus allowing the practicability of the
proposed estimation method, as numerically illustrated in Section 5.5.1.

Proposition 5.3.1 (Identifiability in the univariate setting). The model Q is not identifiable.
In particular, for any admissible parameter θ = (µ, α, β, λ0) there exists an infinite number of
admissible parameters θ′ such that fNθ = fNθ′ .

However, the four collections of models defined below are identifiable:

1. for all µ◦ > 0, Qµ =
{
fN(µ,α,β,λ0)

∈ Q, µ = µ◦
}
;

2. for all α◦ ∈ (0, 1), Qα =
{
fN(µ,α,β,λ0)

∈ Q, α = α◦
}
;

3. for all β◦ > 0, Qβ =
{
fN(µ,α,β,λ0)

∈ Q, β = β◦
}
;

4. for all λ◦0 > 0, Qλ0
=
{
fN(µ,α,β,λ0)

∈ Q, λ0 = λ◦0

}
.

Proof. The proof is given in Appendix 5.B.

The previous discussion raises the question of whether this non-identifiability also extends
to the distribution of the noisy Hawkes process. It turns out that, in the exponential case,
Markov properties of the intensity function λH of the underlying Hawkes process help ensuring
identifiability. Indeed, from the definition of the Hawkes process H and the stationarity of
the Poisson process P ,

(
λN (t)

)
t≥0

is a Markov process: it decreases with rate β(λH(t) − µ) =

β(λN (t)−µ−λ0), and the jumps occurring from the Hawkes process, with rate λH(t) = λN (t)−λ0,
are of size αβ, while the jumps occurring from the Poisson component, with rate λ0, have no
impact on the intensity of the process. Then

(
λN (t), N(t)

)
t≥0

is also a Markov process, more
specifically a piecewise deterministic Markov process (Davis 1984). This allows us to use results
from Dassios et al. (2011) on the distribution of exponential Hawkes processes to show that the
distribution of the exponential noisy Hawkes process is identifiable.

Proposition 5.3.2. Let (µ, α, β, λ0) and (µ′, α′, β′, λ′0) be two admissible 4-tuples for the expo-
nential noisy Hawkes model Q, and N and N ′ respectively defined by these two tuples (Equa-
tion (5.2) with kernel (5.12)). Then, if N and N ′ have same distribution and λN (0) (respec-
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tively λN
′
(0)) is distributed according to the stationary distribution of

(
λN (t)

)
t≥0

(respectively(
λN

′
(t)
)
t≥0

), then (µ, α, β, λ0) = (µ′, α′, β′, λ′0).

Proof. See Appendix 5.C.

A consequence of this result is that non-identifiability of our proposed method in the expo-
nential case is a shortcoming of the spectral approach itself rather than an underlying property of
the noisy Hawkes process, presumably stemming from the fact that the spectral density only en-
codes the second order moments of the process. In the forthcoming section, we briefly investigate
whether this issue arises when considering other reproduction kernels.

5.3.3 Beyond the exponential model
Let N be a noisy Hawkes process defined by the superposition of a stationary Hawkes process
with baseline intensity µ and kernel function αh, with α ∈ (0, 1), h : R → R≥0 and ∥h∥1 = 1,
and a homogeneous Poisson process with intensity λ0. Per Corollary 5.3.1, its spectral density
is given by

∀ω ∈ R : fN (ω) =
µ

(1− α)
∣∣∣1− αh̃(ω)

∣∣∣2 + λ0 .

While it may be difficult to show that a model is identifiable from the spectral density
expression, it may prove fruitful to look at its Taylor expansion around 0, and analyse the Taylor
coefficients. For example, considering the uniform kernel and the corresponding Taylor expansion
of the spectral density up to order 2, we get the following proposition.

Proposition 5.3.3. Let us consider a rectangle interaction function

h : t ∈ R 7→ ϕ−110≤t≤ϕ ,

for some kernel parameter ϕ > 0, and the corresponding statistical model for a univariate noisy
Hawkes process:

R =
{
fNθ : R → C, θ = (µ, α, ϕ, λ0) ∈ R>0 × (0, 1)× R>0 × R>0

}
.

Then R is identifiable.

Proof. See Appendix 5.D.

This last proposition shows that non-identifiability of the spectral approach for the noisy
exponential Hawkes process is more a consequence of the choice of the reproduction function h
rather than a general shortcoming of the spectral approach. It is unexpected that the exponential
reproduction function, usually chosen because the Markov properties for the resulting Hawkes
intensity simplify calculations (Ozaki 1979; Da Fonseca et al. 2013; Duarte et al. 2019), seems
to be here the main culprit of non-identifiability for our proposed spectral approach. Still, we
will show how, by imposing some constraints on the modelling of multivariate noisy Hawkes
processes, we are able to ensure identifiability of the model even in this case.

5.4 The bivariate noisy Hawkes process

This section addresses bivariate noisy Hawkes processes (d = 2). More precisely, for such a
process N = H+P , where H is a bivariate Hawkes process (see Equation (5.1)) and P a Poisson



5.4. The bivariate noisy Hawkes process 87

process with shared intensity λ0, Corollary 5.4.1 gives the closed-form expression of the spectral
density fN .

Corollary 5.4.1. Let N = (N1, N2) be a bivariate noisy Hawkes process defined by the superpo-
sition of a stationary Hawkes process H = (H1, H2) (with baseline intensities µ1 > 0 and µ2 > 0,
and kernel functions hij : R → R≥0, 1 ≤ i, j ≤ 2) and an independent homogeneous Poisson
process P = (P1, P2) (with same constant intensity λ0 > 0). Then the spectral density fN of N
reads:

∀ω ∈ R, fN (ω) =

(
fH11(ω) + λ0 fH12(ω)
fH21(ω) fH22(ω) + λ0

)
,

where 
fH11(ω) =

mH
1 |1−h̃22(ω)|2+mH

2 |h̃12(ω)|2
|(1−h̃11(ω))(1−h̃22(ω))−h̃12(ω)h̃21(ω)|2

fH12(ω) =
mH

1 (1−h̃22(ω))h̃21(−ω)+mH
2 (1−h̃11(−ω))h̃12(ω)

|(1−h̃11(ω))(1−h̃22(ω))−h̃12(ω)h̃21(ω)|2
,

and
mH

1 =
µ1 (1− ∥h22∥1) + µ2∥h12∥1

(1− ∥h11∥1) (1− ∥h22∥1)− ∥h12∥1∥h21∥1
,

and fH22, fH21 and mH
2 are obtained by symmetry of all indices.

Proof. This is straightforward from Equations (5.9) and (5.10).

Then, the estimation procedure is exactly that described in Section 5.1.1, which is based
on computing the cross periodogram IT and on maximising the spectral log-likelihood ℓT (see
Equations (5.3) and (5.4)). Now, similarly to the univariate case detailed in Section 5.3.2, we
consider exponential interaction functions, i.e. for 1 ≤ i, j ≤ 2:

∀t ∈ R : hij(t) = αijβie
−βit1t≥0,

with αij ≥ 0 and βi > 0. The kernel parameter is thus γ = (α, β), where α ∈ R2×2
≥0 and β ∈ R2

>0

and the statistical model for a bivariate noisy Hawkes process becomes:

QΛ =
{
fNθ : R → C2×2, θ = (µ, α, β, λ0) ∈ R2

>0 × Λ× R2
>0 × R>0, β ∈ Ωα

}
,

where Λ ⊂ {α ∈ R2×2
≥0 : ρ(α) < 1} is subset of matrices α that will be specified later, and for all

α ∈ R2×2
≥0 ,

Ωα =
{
β ∈ R2

>0, β1 = 1 if α11 = α12 = 0, β2 = 1 if α21 = α22 = 0
}
,

is a subset of admissible values for β. The definition of Ωα takes into account that when a
row, say the first one, of the interaction matrix α is null, then the corresponding kernels verify
h11 = 0 and h12 = 0 independently of the value of β1. Thus, identifiability for the parameter
β1 is hopeless, which justifies that we get rid of it (by fixing it to an arbitrary value) from the
model.

Remark. Different versions of the multivariate exponential model exist. A first convention
assumes that there is a unique β ∈ R>0 shared by all kernel functions (Chevallier et al. 2019;
Bacry et al. 2020). A second and less restrictive option, which is that we opt for in this work,
assumes that the recovery rate βi ∈ R>0 for each subprocess Ni (1 ≤ i ≤ d) is shared among
received interactions (Bonnet et al. 2023). These choices allow for simplified derivations of
estimators in the time domain and in the frequency domain, as shown below.
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The aim of this section is to study identifiability of model QΛ. A broad analysis (i.e. for Λ =
{α ∈ R2×2

≥0 : ρ(α) < 1}) being out of reach for complexity reasons, we exhibit some situations (i.e.
subsets Λ) for which non-identifiability (Proposition 5.4.1) or identifiability (Proposition 5.4.2)
can be proved.

Proposition 5.4.1 (Non-identifiability in the bivariate setting). The model QΛ is not identifiable
in the three situations:

1. Λ =

{(
α11 0
0 α22

)
, 0 ≤ α11, α22 < 1

}
, that is for diagonal matrices α (with possibly null

entries).

2. Λ =

{(
α11 α12

0 0

)
, 0 < α11 < 1, α12 > 0

}
, that is for matrices with positive entries in the

first row and null entries in the second.

3. Λ =

{(
0 0
α21 α22

)
, α21 > 0, 0 < α22 < 1

}
, that is for matrices with null entries in the first

row and positive entries in the second.

Proof. The proof is given in Appendix 5.E.

Remark. The proof of Proposition 5.4.1, Situation 1 reveals that non-identifiability stands ac-
tually for each subprocess (considered as a univariate process), such that all the submodels with
null cross-interactions built by fixing α11 or α22 to zero, or by keeping them away from zero are
also not identifiable.

Proposition 5.4.2 (Identifiability in the bivariate setting). The model QΛ is identifiable in the
four situations:

1. Λ =

{(
α11 0
α21 0

)
, 0 ≤ α11 < 1, α21 > 0

}
, that is for matrices α with null entries in the

second column and a positive entry on the antidiagonal.

2. Λ =

{(
0 α12

0 α22

)
, α12 > 0, 0 ≤ α22 < 1

}
, that is for matrices α with null entries in the first

column and a positive entry on the antidiagonal.

3. Λ =

{(
α11 0
α21 α22

)
, 0 < α11 < 1, α21 > 0, 0 ≤ α22 < 1

}
, that is for matrices α with positive

entries in the first column and null upper right entry.

4. Λ =

{(
α11 α12

0 α22

)
, 0 ≤ α11 < 1, α12 > 0, 0 < α22 < 1

}
, that is for matrices α with a null

lower left entry and positive entries in the second column.

Proof. The proofs of Situations 1 and 3 are respectively in Appendices 5.F and 5.G. The other
situations are obtained by symmetry of all indices.

Several lessons can be learnt from Propositions 5.4.1 and 5.4.2 and Remark 5.4. First, the
statistical model QΛ is not identifiable if H reduces to a bivariate homogenous Poisson process
(Proposition 5.4.1, Situation 1 with α11 = α22 = 0) or to two independent univariate Hawkes
processes (Proposition 5.4.1, Situation 1 with α11 > 0 and α22 > 0) even if the noise P shares
the same intensity λ0 for both subprocesses. This result actually still holds true for a dimension
d > 2.
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Second, Proposition 5.4.2 tells in a nutshell that there must exist cross-interactions in the
Hawkes process H (i.e. α12 > 0 or α21 > 0) for the model QΛ to be identifiable. However,
interactions must not come from a Poisson subprocess and reach a self-exciting Hawkes subprocess
(Proposition 5.4.1, Situations 2 and 3), but rather they must reach a self-neutral (i.e. with null
self-excitation) Hawkes subprocess (Proposition 5.4.2, Situations 1 and 2) or come from a self-
exciting Hawkes subprocess (Proposition 5.4.2, Situations 3 and 4).

5.5 Numerical results

This section numerically illustrates the behaviour of the proposed estimator θ̂ (described in
Section 5.1.1) for noisy exponential Hawkes processes. It investigates the effect of horizon T and
hyperparameter M in the univariate setting (Section 5.5.1), and the impact of model sparsity
and interaction strength in the bivariate setting (Section 5.5.2).

In the whole study, point processes are simulated thanks to Ogata’s thinning method (Ogata
1981) and numerical optimisation of the spectral log-likelihood is performed via the L-BFGS-B
method (Byrd et al. 1995), implemented in the scipy.optimize.minimize Python function.
Both simulation and estimation algorithms are freely available as a Python package on GitHub1

5.5.1 Univariate setting

Simulation and estimation scenarios

Data simulation We consider observations (TN
k )1≤k≤N(T ) coming from a univariate exponen-

tial noisy Hawkes process N = H + P , where P is a Poisson process with intensity λ0 > 0 and
H is a Hawkes process with baseline intensity µ = 1 and kernel given by Equation (5.12) with
parameters α = 0.5 and β = 1.

In order to get close to stationarity while coping with inability to generate a process on the
whole line R, N is simulated on the window [−100, T ] with no points in (−∞,−100) but only
observations falling in [0, T ] are considered.

The forthcoming section will illustrate the convergence of θ̂, thanks to its behaviour with
respect to varying horizon T ∈ {250, 500, 1000, . . . , 8000}, and the impact of the intensity
λ0 of the noise process P on estimation accuracy, via varying noise-to-signal ratio λ0/m

H ∈
{0.2, 0.4, . . . , 2.0} (given the average intensity mH = µ/(1− α) = 2 of H).

Statistical models According to Proposition 5.3.1, which states four collections of identifiable
models for univariate exponential Hawkes processes, estimation is successively performed in
models Qµ, Qα, Qβ , Qλ0

, where the known parameter is fixed to the value of the generated
process (see above).

In addition, the behaviour of θ̂ will be assessed thanks to its relative error ∥θ̂ − θ⋆∥2/∥θ⋆∥2
(where θ⋆ = (µ, α, β, λ0) is the vector of the parameters of the generated process) averaged over
50 different trials.

Convergence, computation time and influence of parameter M

Up to now, the hyperparameter M , appearing in the spectral log-likelihood (Equations (5.4) and
(5.11)) and determining the number of frequencies tested with the spectral density, has been let

1https://github.com/migmtz/noisy-hawkes-process

https://github.com/migmtz/noisy-hawkes-process
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free. However, the theoretical literature suggests that its choice has a lot of influence on the
convergence of the estimation procedure, and has to be guided by M/T −−−−→

T→∞
∞ (Pham 1996).

Since the rate of convergence is not specified but has an effect on the computational efficiency
of the spectral estimator, we propose to study the compatible case M = N(T ) logN(T ) and the
economy case M = N(T ).

Figure 5.1 displays the relative errors ∥θ̂ − θ⋆∥2/∥θ⋆∥2 with respect to both the simulation
horizon T (top panels) and the estimation time (bottom panels). As expected, the quality of
the estimations improves as T increases, and this independently of which parameter is fixed.
Estimations are slightly better when considering M = N(T ) logN(T ) (orange line) especially
for smaller values of T but the trade-off is a ten times higher computation time. Therefore, the
performance benefit of taking M = N(T ) logN(T ) rather than M = N(T ) seems minor when
compared to the computational cost. For this reason, the forthcoming numerical experiments
will be performed with M = N(T ).
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Figure 5.1: Relative estimation error with confidence bands (±1.96 empirical standard deviation)
respectively for µ, α, β and λ0 fixed (columns from left to right) with respect to the time horizon
T (top) and the computation time (bottom) in logarithmic scale. Level of noise λ0 = 1.6.

Influence of the noise level

Figure 5.2 shows the relative error with respect to the ratio λ0/mH , obtained when increasing
the value of λ0 while keeping the other parameters fixed, for a given horizon T = 8000.

First, we can see that the value of λ0 has a low impact on the quality of estimations. However,
let us notice that when β is fixed, the average error is substantially larger than when any of the
other parameters is fixed. This could be explained by a compensation phenomenon inside the
triplet (µ, α, λ0) which occurs as our method implicitly adjusts the estimation to the mean
intensity of the noisy Hawkes process:

mN = λ0 +
µ

1− α
,
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Figure 5.2: Relative estimation error with confidence bands (±1.96 empirical standard deviation)
respectively for µ, α, β and λ0 fixed with respect to the noise-to-signal ratio for the maximal
horizon T = 8000.

which is indeed a quantity independent of β.
This numerical compensation is illustrated in Figure 5.3, where we can see that overestimating

µ is systematically balanced by underestimating α and λ0 and vice versa, whereas the estimated
mean intensities remain accurate. In this experiment, the level of noise has been arbitrarily fixed
to λ0 = 1.2 but the observed behaviour appears similarly for all possible values of λ0 used in the
previous section.

When performing estimation with α fixed (the case for which the average error is the second
largest, as illustrated in Figure 5.2), the compensation appears only between µ̂ and λ̂0 whereas
β̂ does not seem impacted, as shown in Figure 5.4.

5.5.2 Bivariate setting
This section illustrates numerical estimation of bivariate exponential noisy Hawkes processes
(see Section 5.4) when conditions of identifiability are met (Proposition 5.4.2). We carry out
two different studies, exploring different scenarios: Section 5.5.2 studies the influence of the
strength of the cross-interaction between the two subprocesses and Section 5.5.2 investigates the
performance of the estimator with and without knowledge of the null components. Indeed, since
identifiability conditions depend on knowing which components are non-null, an information that
is unlikely to be available in practical applications, we compare the performance of the estimator
for both the reduced model QΛ, where the null components are known, and the complete model,

Q =
{
fNθ : R → C2×2, θ = (µ, α, β, λ0) ∈ R2

>0 × R2×2
≥0 × R2

>0 × R>0, ρ(α) < 1
}
,

with no prior information.

Throughout this section, we consider a Hawkes process with µ =

(
1.0
1.0

)
and β =

(
1.0
1.3

)
. In
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Figure 5.3: Estimations µ̂, α̂ and λ̂0 (of µ, α, and λ0) for λ0 = 1.2 when β is fixed, sorted by the
values of µ̂ (top). In all plots, each color corresponds to one of the 50 repetitions. Boxplot of
estimated mean intensities (bottom).

addition, fortified by the analysis of the univariate setting, the Poisson intensity is chosen to
be λ0 = 0.5 (the level of noise does not appear to have a significant impact on the quality of
estimations, Figure 5.2) and it is considered M = N(T ) (which provides accurate estimations in
a reasonable amount of time, Figure 5.1).

Influence of the cross-interaction

Let us consider one of the identifiable scenarios where the only non-null interaction in the Hawkes
process is one of the two cross-interactions (see Proposition 5.4.2, Situation 1). More precisely,
we consider the reduced model QΛ, where

Λ =

{(
0 0
α21 0

)
: α21 > 0

}
.

The Hawkes process is then simulated with different levels of cross-interaction: α21 ∈ {0.2, 0.4, 0.6, 0.8},
and estimations are obtained by optimising the spectral log-likelihood on the non-null parameters
µ1, µ2, α21, β2, and λ0.

Figure 5.5 illustrates the influence of the true parameter α21 on the quality of the estimations,
through the relative error of the estimations for the different values of α21 and an increasing range
of horizons T . As a complement to what has been observed in Figure 5.1, our estimator appears
to behave particularly well for higher values of T , but also for higher values of α21.



5.5. Numerical results 93

0 20 40

0.9

1.0

1.1

1.2
Real parameter

0 20 40
0.85

0.90

0.95

1.00

1.05

1.10

1.15
Real parameter

0 20 40

0.8

1.0

1.2

1.4

0

Real parameter

2.8 2.9 3.0 3.1 3.2 3.3 3.4

Estimated mean intensities

Real mean intensity

Figure 5.4: Estimations µ̂, β̂ and λ̂0 (of µ, β, and λ0) for λ0 = 1.2 when α is fixed, sorted by the
values of µ̂ (top). In all plots, each color corresponds to one of the 50 repetitions. Boxplot of
estimated mean intensities (bottom).
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Figure 5.5: Heatmap of relative errors for each estimation µ̂1, µ̂2, α̂21, β̂2, and λ̂0 for different
levels of interaction α21 (x-axis) and horizons T (y-axis).

This is not surprising since, for smaller values of α21, the Hawkes process behaves closely
to a homogeneous Poisson process, and as proven in Proposition 5.4.1, the superposition of two
Poisson processes leads to a non-identifiable model. Lower interactions necessitate then higher
values of T to obtain satisfactory results. Inversely, for average and high interaction magnitudes,
we start to obtain small errors for horizon values around T = 3000.
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Influence of null interactions

In this section we simulate 50 repetitions with a fixed horizon T = 3000 for two identifiable
scenarios regarding the Hawkes process H = (H1, H2).

Scenario 1 The matrix of interactions is:

α =

(
0.5 0
0.4 0

)
,

corresponding to Proposition 5.4.2, Situation 1. In other terms, H1 excites both subpro-
cesses whereas H2 has no influence on the dynamics (See Figure 5.6, left).

Scenario 2 The matrix of interactions is:

α =

(
0.5 0
0.4 0.4

)
,

corresponding to Proposition 5.4.2, Situation 3. In other terms, H1 excites both subpro-
cesses and H2 excites itself (See Figure 5.6, right).

Figure 5.6: Interactions in the two numerical scenarios considered.

Graphics in the left column of Figure 5.7 present the boxplots of each parameter estimation
when considering their respective reduced models QΛ. These results show that our method pro-
vides unbiased estimates of all parameters and is particularly efficient at inferring the interaction
matrix α (estimations have very low variance). The larger variances are observed for parameters
µ1, µ2 and λ0, which is probably due to compensation effects already mentioned in Section 5.5.1.

Estimating in the reduced model QΛ requires prior knowledge on the null parameters αij

(1 ≤ i, j ≤ 2), which is unlikely in practical applications. Therefore, we compare the results
obtained in the reduced model to those in the complete model Q (see the right column graphics
in Figure 5.7). If the estimates of α and β seem still empirically unbiased, we observed several
deteriorations compared to the previous results. First, we notice a bias in the estimates of µ1,
µ2 and λ0: more precisely, µ1 and µ2 are overestimated while λ0 is underestimated in both
scenarios. Moreover, we observe in Scenario 2 some outlier estimations for the αij (1 ≤ i, j ≤ 2)
coefficients, which did not appear when considering the reduced model.

Fortunately, Figure 5.7 also suggests that our estimator is able to detect the null interactions
in the full model, which allows to re-estimate the parameters in the reduced model. To do so, we
propose to look at the 5%-empirical quantile of each term of the estimated interaction matrix α̂,
which are summarised in Table 5.1.

We can notice that the empirical 5%-quantiles are set to zero for each real null parameters
αij (1 ≤ i, j ≤ 2) in both scenarios. This suggests that when enough repetitions are available,
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Figure 5.7: Boxplots of parameter estimations in the reduced model QΛ (left) and full model
Q (right) in Scenario 1 (top) and Scenario 2 (bottom) (50 trials). Average estimation (green
triangle) is to be compared to true parameter (blue point).

α11 α12 α21 α22

Scenario 1 0.40 0.00 0.32 0.00
Scenario 2 0.41 0.00 0.34 0.35

Table 5.1: 5%-quantile of each parameter of the estimated interaction matrix α̂. The true
parameter α12 is null in both scenarios and α22 is null only in Scenario 1.

it is possible to use these empirical quantiles to estimate the null interactions. An estimation
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procedure when no prior information is known about the support of the interaction graph would
then consist in a three-step approach: first, estimating all parameters in the complete model Q;
second, computing the 5%-quantiles for all estimated interactions parameters in matrix α̂, and
defining the support of α to be entries corresponding to a positive empirical quantile; finally,
re-estimating all parameters in the reduced model defined by the support of α. Let us remark
that the proposed support estimation step boils down to correspond to a multiple test that, when
the noisy Hawkes process has significantly more that 2 dimensions, can be corrected thanks to
usual procedures such as Bonferroni and Benjamini-Hochberg methods.

5.6 Discussion

In this chapter, we propose a spectral approach to estimate the parameters of a noisy Hawkes
process, the performance of which is illustrated on an extended numerical study. Although we
highlight the great benefit of considering a spectral analysis when standard inference methods
are not available, we also bring out identifiability issues that may arise, either from the model
itself or from the spectral approach. While we exhibit several identifiable and non-identifiable
scenarios in both univariate and bivariate contexts, a general result on identifiability is still to
be established, in particular in higher dimensions. For this purpose, the number of non-null
cross-interactions and the choice of the kernel functions appear to be key elements in order to
obtain identifiability guarantees.

More generally, we believe that the spectral analysis can provide efficient estimators in many
frameworks of inaccurately or partially observed data. A natural extension of this work is to
consider alternative forms for the noise process, for instance an heterogeneous Poisson process.
Another topic of interest is to investigate another mechanism for the noise when some points
are randomly missing. This would be complementary to our work since it would allow to model
both false positive and false negative occurrences. In practice, this could be of great interest for
applications, especially for the tracking of epidemics. Finally, let us mention that this chapter
focuses on the linear Hawkes model, which excludes notably inhibition phenomenons. Though
the nonlinear framework is particularly interesting for many applications, for instance in neuro-
science, all the spectral theory for point processes only exists in a linear context so that we believe
that developing a spectral inference procedure for nonlinear processes would be very challenging
and remains a widely open topic.

5.A Proof of Proposition 5.2.1

Lemma 5.A.1. Let X and Y be two independent and stationary multivariate point processes
with same dimension d. If they admit second order moment measures, denoted respectively
(MX

ij )1≤i,j≤d and (MY
ij )1≤i,j≤d, then the process N = X+Y also admits a second order moment

measure, noted (MN
ij )1≤i,j≤d, and for any pair (A,B) ∈ (Bc

R)
2 and all 1 ≤ i, j ≤ d:

MN
ij (A,B) =MX

ij (A,B) +MY
ij (A,B) + (mX

i m
Y
j +mX

j m
Y
i )ℓR(A)ℓR(B) , (5.15)

where for all i ∈ {1, . . . , d} and mX
i = E[Xi([0, 1))] and mY

i = E[Yi([0, 1))]. Furthermore, the
reduced measure of N reads:

M̆N
ij (B) = M̆X

ij (B) + M̆Y
ij (B) + (mX

i m
Y
j +mX

j m
Y
i )ℓR(B) . (5.16)
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Proof. Let (A,B) ∈ (Bc
R)

2. Then for any 1 ≤ i, j ≤ d:

MN
ij (A,B) = E[Ni(A)Nj(B)]

= E[(Xi(A) + Yi(A))(Xj(B) + Yj(B))]

= E[Xi(A)Xj(B)] + E[Xi(A)Yj(B)] + E[Xj(A)Yi(B)] + E[Yj(A)Yj(B)]

=MX
ij (A,B) + E[Xi(A)]E[Yj(B)] + E[Xj(A)]E[Yi(B)] +MY

ij (A,B)

=MX
ij (A,B) +mX

i m
Y
j ℓ(A)ℓ(B) +mX

j m
Y
i ℓ(A)ℓ(B) +MY

ij (A,B) ,

where the last line comes from the stationarity, which implies that E[Xi(A)] = mX
i ℓ(A).

By applying Equation (5.5) to the function g(x, y) = 1x∈[0,1]1y−x∈B for any B ∈ Bc
R, we can

remark that: ∫
R2

g(x, y)MN
ij (dx, dy) =

∫
[0,1]

ℓR(dx)

∫
B

M̆N
ij (du) = M̆N

ij (B) .

In particular this equality is also true if we replace N by X and Y . By leveraging Equation (5.15)
on the left-side integral, we obtain:∫
R2

g(x, y)MN
ij (dx, dy) = M̆X

ij (B) + M̆Y
ij (B) + (mX

i m
Y
j +mX

j m
Y
i )

∫
x∈[0,1]

∫
y∈B+x

ℓR(dy) ℓR(dx)

= M̆X
ij (B) + M̆Y

ij (B) + (mX
i m

Y
j +mX

j m
Y
i )ℓR([0, 1])ℓR(B)

= M̆X
ij (B) + M̆Y

ij (B) + (mX
i m

Y
j +mX

j m
Y
i )ℓR(B) ,

which achieves the proof.

Proof of Proposition 5.2.1

By definition of the spectral density, for all ω ∈ R:

fNij (ω) =

∫
R
e−2πixω M̆N

ij (dx)−mN
i m

N
j δ(ω)

=

∫
R
e−2πixω M̆X

ij (dx) +

∫
R
e−2πixω M̆Y

ij (dx)

+ (mX
i m

Y
j +mX

j m
Y
i )

∫
R
e−2πixω ℓR(dx)− (mX

i +mY
i )(m

X
j +mY

j )δ(ω)

=

∫
R
e−2πixω M̆X

ij (dx)−mX
i m

X
j δ(ω) +

∫
R
e−2πixω M̆Y

ij (dx)−mY
i m

Y
j δ(ω)

+ (mX
i m

Y
j +mX

j m
Y
i )

∫
R
e−2πixω ℓR(dx)− (mX

i m
Y
j +mY

i m
X
j )δ(ω)

=fXij (ω) + fYij (ω) + (mX
i m

Y
j +mX

j m
Y
i )

∫
R
e−2πixω dx− (mX

i m
Y
j +mY

i m
X
j )δ(ω) . (5.17)

By properties of the Dirac measure, for all ω ∈ R:∫
R
e−2πixωδ(x) dx = 1 ,
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and so by duality of the Fourier transform Pinsky (2008, Proposition 5.2.4.) it follows that:∫
R
e−2πixω dx = δ(ω) .

The last two terms of Equation (5.17) being equal, we obtain fNij = fXij + fYij .

5.B Proof of Proposition 5.3.1

We first show that equality of two spectral densities with different parameters is equivalent to
a system of equations (Equations (5.18)). This result will be used then to prove both parts of
Proposition 5.3.1.

Let (µ, α, β, λ0) and (µ′, α′, β′, λ′0) be two admissible 4-tuples for the exponential noisy Hawkes
model. Let us assume that for all ω ∈ R:

fN(µ,α,β,λ0)
(ω) = fN(µ′,α′,β′,λ′

0)
(ω).

Thanks to Equation (5.14), this equality implies the following system of equations:



µ

1− α
+ λ0 =

µ′

1− α′ + λ′0 (ω → +∞)

µ

1− α

β2α(2− α)

β2(1− α)2
+

µ

1− α
+ λ0 =

µ′

1− α′
β′2α′(2− α′)

β′2(1− α′)2
+

µ′

1− α′ + λ′0 (ω = 0)

µ

1− α

β2α(2− α)

β2(1− α)2 + 4π2
+

µ

1− α
+ λ0 =

µ′

1− α′
β′2α′(2− α′)

β′2(1− α′)2 + 4π2
+

µ′

1− α′ + λ′0 (ω = 1).

The first equality can be used to simplify the second and third equalities, leading to:



µ

1− α
+ λ0 =

µ′

1− α′ + λ′0

µ

1− α

α(2− α)

(1− α)2
=

µ′

1− α′
α′(2− α′)

(1− α′)2

µ

1− α

β2α(2− α)

β2(1− α)2 + 4π2
=

µ′

1− α′
β′2α′(2− α′)

β′2(1− α′)2 + 4π2
.

Now, given that α ∈ (0, 1) (same for α′), the last two equalities lead to:

β2(1− α)2

β2(1− α)2 + 4π2
=

β′2(1− α′)2

β′2(1− α′)2 + 4π2
,

which in turn implies β(1− α) = β′(1− α′).
Thus, it results the following system of equations:
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µ

1− α
+ λ0 =

µ′

1− α′ + λ′0 (5.18a)

µα(2− α)

(1− α)3
=
µ′α′(2− α′)

(1− α′)3
(5.18b)

β(1− α) = β′(1− α′) . (5.18c)

Now, Equations (5.18) lead to
µ

1− α
+ λ0 =

µ′

1− α′ + λ′0

µ

1− α
β2α(2− α) =

µ′

1− α′ β
′2α′(2− α′)

β(1− α) = β′(1− α′) ,

which, by Equation (5.14), implies straightforwardly fN(µ,α,β,λ0)
= fN(µ′,α′,β′,λ′

0)
. Consequently,

fN(µ,α,β,λ0)
= fN(µ′,α′,β′,λ′

0)
⇐⇒ Equations (5.18) .

The model Q is not identifiable.

Let τ > −λ0 and λ′0 = λ0 + τ > 0.
Then, by denoting κ = µ

1−αβ
2α(2− α), Equations (5.18) are equivalent to:

µ′ =
β(1−α)( µ

1−α−τ)√
β2(1−α)2+ κ

µ
1−α

−τ

α′ = 1− β(1−α)√
β2(1−α)2+ κ

µ
1−α

−τ

β′ =
√
β2(1− α)2 + κ

µ
1−α−τ .

(5.19)

From (5.19), it is clear that for all τ ∈
(
−λ0, µ

1−α

)
\ {0}, (µ′, α′, β′, λ0 + τ) ̸= (µ, α, β, λ0) is an

admissible parameter for Q and fN(µ′,α′,β′,λ0+τ) = fN(µ,α,β,λ0)
. Consequently, Q is not identifiable.

The reduced model defined by a triplet of admissible parameters is identifiable.

It will be shown that, for admissible parameters, fN(µ,α,β,λ0)
= fN(µ′,α′,β′,λ′

0)
implies

µ = µ′ ⇐⇒ α = α′ ⇐⇒ β = β′ ⇐⇒ λ0 = λ′0 ,

from which we can deduce identifiability of the four collections of models mentioned in Proposi-
tion 5.3.1. Indeed, let, for instance, α◦ ∈ (0, 1) and consider

Qα =
{
fN(µ,α,β,λ0)

∈ Q, α = α◦
}
.
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Then for all fN(µ,α,β,λ0)
∈ Qα and fN(µ′,α′,β′,λ′

0)
∈ Qα,

fN(µ,α,β,λ0)
= fN(µ′,α′,β′,λ′

0)
=⇒

{
µ = µ′ ⇐⇒ α = α′ ⇐⇒ β = β′ ⇐⇒ λ0 = λ′0

α = α◦ = α′ =⇒


µ = µ′

β = β′

λ0 = λ′0

α = α′ .

So, let us assume that f(µ,α,β,λ0) = f(µ′,α′,β′,λ′
0)

, for some admissible parameters. As shown
beforehand this implies Equations (5.18). From Equation (5.18c), we establish that

α = α′ ⇐⇒ β = β′ ,

since, β > 0 and α < 1.
From Equation (5.18b), since α > 0, it is clear that α = α′ =⇒ µ = µ′. Conversely, if

µ = µ′ > 0, Equation (5.18b) becomes:

g(α) =
α(2− α)

(1− α)3
=
α′(2− α′)

(1− α′)3
= g(α′) .

In particular, g is a strictly increasing function on (0, 1) and so it can be deduced that α = α′.
So

µ = µ′ ⇐⇒ α = α′ .

Finally, as µ = µ′ ⇐⇒ α = α′, from Equation (5.18a) we conclude that α = α′ =⇒ λ0 = λ′0.
Let us now assume that λ0 = λ′0, Equation (5.18a) then reads

µ

1− α
=

µ′

1− α′ .

As µ > 0 and µ′ > 0, Equation (5.18b) can be then reduced to

s(α) :=
α(2− α)

(1− α)2
=
α(2− α)

(1− α)2
= s(α′) ,

where s is a strictly increasing function on (0, 1) and so α = α′. With this we have proved that
α = α′ ⇐⇒ λ0 = λ′0 which achieves the proof.

5.C Proof of Proposition 5.3.2

Let (HN
t )t≥0 (respectively (HH

t )t≥0) be the natural filtration associated with (λN (t))t≥0 (respec-
tively (λH(t))t≥0). Let us now consider the conditional survival function of the first non-negative
jump τ1 of N given the past (before 0): for all t ≥ 0,

P
(
τ1 > t | HN

0

)
= P

(
N(t) = 0 | HN

0

)
= P

(
P (t) = 0, H(t) = 0 | HN

0

)
= P

(
P (t) = 0 | HN

0

)
P
(
H(t) = 0 | HN

0

)
(by independence)

= P (P (t) = 0)P
(
H(t) = 0 | HH

0

)
(by definition)

= e−λ0te−µ(t−ut)−utλ
H(0) ,
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with ut = (1− e−βt)β−1 and where we have used that, given that H(t) = 0, for all u ∈ [0, t],

λH(u) = µ+
(
λH(0)− µ

)
e−βu.

Let us remark that the last equality can also be deduced from Dassios et al. (2011, Corollary 3.3)
with the same notation ut:

P
(
H(t) = 0 | HH

0

)
= exp

(
−
∫ ut

0

µβv

1− βv
dv

)
e−utλ

H(0) .

It appears that P
(
τ1 > t | HN

0

)
depends on the past only through λH(0). But λH(0) =

λN (0) − λ0 and λN (0) is distributed according to the stationary distribution of
(
λN (t)

)
t≥0

.
It results that λH(0) is distributed according to the stationary distribution of

(
λH(t)

)
t≥0

, the
Laplace transform of which is given by Dassios et al. (2011, Corollary 3.1). Plugging in this
result, we have:

P (τ1 > t) = e−λ0t−µ(t−ut)E
[
e−utλ

H(0)
]

= e−λ0t−µ(t−ut) exp

(
−
∫ ut

0

µβv

βv + e−αβv − 1
dv

)
.

For ease of derivation, let G : t ∈ R≥0 7→ − logP (τ1 > t). The function G is differentiable and
has derivative D given by:

D(t) = λ0 + µ
(
1− e−βt

)
+

µ
(
1− e−βt

)
e−βt

exp (−α (1− e−βt))− e−βt
.

Now define in the same manner τ ′1, G′, andD′ from the processN ′ with parameter (µ′, α′, β′, λ′0),
with λN

′
(0) being distributed according to the stationary distribution of

(
λN

′
(t)
)
t≥0

, and assume
that N and N ′ have the same distribution. Then it follows that both τ1 and τ ′1 have the same
distribution, so that G(t) = G′(t) for all t ≥ 0. Since G and G′ are everywhere differentiable and
have the same initial value G(0) = G′(0) = 0, it results that D(t) = D′(t) for all t ≥ 0.

We want to establish a system of four equations satisfied by the parameters that leads to the
equality of the 4-tuples. First, noting that limt→∞D(t) = λ0 + µ, we get

λ0 + µ = λ′0 + µ′ . (5.20)

Then, since limt→0D(t) = λ0 + µ/(1− α), we get, using Equation (5.20),

µα

1− α
=

µ′α′

1− α′ . (5.21)

To highlight two other equations on the parameters, we establish the Taylor expansion of
D(t) around t = 0 up to order 2. After some calculation, we find that

D(t) = λ0 +
µ

1− α
+

µα

1− α

(
1

2
βt
α− 2

1− α
+

1

12
β2t2

α3 − α2 − 3α+ 6

(1− α)2
+ o
(
t2
))

.

From the first-order term of the expansion, Equation (5.21) and the equality of D and D′, we
find that

β
α− 2

1− α
= β′α

′ − 2

1− α′ . (5.22)
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Then the second-order term of the expansion can be rewritten

µα

1− α

1

12

(
β(α− 2)

1− α

)2
α3 − α2 − 3α+ 6

(α− 2)2
,

so that from Equations (5.21) and (5.22), we find that

g(α) =
α3 − α2 − 3α+ 6

(α− 2)2
=
α′3 − α′2 − 3α′ + 6

(α′ − 2)2
= g(α′) . (5.23)

α 7→ g(α) can be shown to be strictly increasing for α ∈ (0, 1), so that Equation (5.23) yields that
α = α′. With this remark, one can easily show from the system composed by Equations (5.20)–
(5.23) that the tuples (µ, α, β, λ0) and (µ′, α′, β′, λ′0) are equal.

5.D Proof of Proposition 5.3.3

Lemma 5.D.1. Assume all moments of h are finite: ∀n ≥ 0,mn =
∫
tnh(t) dt < ∞. Then the

spectral density fN of the noisy Hawkes process N has a Taylor expansion around 0 given by:

∀t ∈ R : fN (t) =
µ

(1− α)3
+

µ

(1− α)3

∑
q≥1

 α

1− α

∑
n≥1

bnt
2n

q

+ λ0 , (5.24)

with

bn =
(−1)n(2π)2nan

(2n)!
, and an = 2m2n − α

1− α

2n−1∑
k=1

(
2n

k

)
(−1)kmkm2n−k . (5.25)

Proof. Introduce the Taylor expansion of the Fourier transform of h:

∀t ∈ R : h̃(t) =
∑
n≥0

(iτ)n
mn

n!
,

where τ = −2πt. Then, given that m0 = 1,

∣∣∣1− αh̃(t)
∣∣∣2 =

1− α
∑
n≥0

(iτ)n
mn

n!

1− α
∑
n≥0

(−iτ)n
mn

n!


= 1− 2α

∑
n≥0

(−1)nτ2n
m2n

(2n)!
+ α2

∑
n≥0

n∑
k=0

(−1)k(iτ)n
mn−kmk

(n− k)!k!

= 1− α
∑
n≥0

2m2n
(−1)nτ2n

(2n)!
+ α2

∑
n≥0

2n∑
k=0

(−1)kmkm2n−k

(
2n

k

)
(−1)nτ2n

(2n)!

= (1− α)2

1− α

1− α

∑
n≥1

an
(−1)nτ2n

(2n)!

 .

Inverting this expression and taking the Taylor expansion of x 7→ (1 − x)−1 around 0 yields
the desired result.
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Remark. For n = 1, 2, an is given by{
a1 = 2m2 +

α
1−α2m

2
1

a2 = 2m4 +
α

1−α

(
8m1m3 − 6m2

2

)
,

so that the Taylor expansion of fN up to order 5 is:

fN (t) = a+ c1t
2 + c2t

4 + o(t5) ,

with

a =
µ

(1− α)3
+ λ0

c1 = 4
µαπ2

(1− α)4

[
−m2 −

α

1− α
m2

1

]
c2 = 16

µαπ4

(1− α)4

[
m4

12
+

α

1− α

(
m1m3

3
+

3m2
2

4

)
+

(
α

1− α

)2

2m2m
2
1 +

(
α

1− α

)3

m4
1

]
.

Proof of Proposition 5.3.3

Let (µ, α, ϕ, λ0) and (µ′, α′, ϕ′, λ′0) be two admissible 4-tuples for the uniform noisy Hawkes model
R, and assume that, for all ω ∈ R,

fN(µ,α,ϕ,λ0)
(ω) = fN(µ′,α′,ϕ′,λ′

0)
(ω) .

First, noting that limω→∞ fN(µ,α,ϕ,λ0)
(ω) = λ0 + µ/(1− α), we get

λ0 +
µ

1− α
= λ′0 +

µ′

1− α′ . (5.26)

Then, since fN(µ,α,ϕ,λ0)
(0) = λ0 + µ/(1− α)3 and using Equation (5.26), we get:

µα(2− α)

(1− α)3
=
µ′α′(2− α′)

(1− α′)3
. (5.27)

Now, since the Taylor expansions, given by Equation (5.24), of fN(µ,α,ϕ,λ0)
and fN(µ′,α′,ϕ′,λ′

0)

around 0 coincide, their respective Taylor coefficients (c1, c2, . . .) and (c′1, c
′
2, . . .) are equal. Plug-

ging in the moments of the uniform distribution on [0, ϕ],

mn =
ϕn

n+ 1
, for all n ≥ 0 ,

the first order coefficient c1 can be written

c1 = −π
3

µα(2− α)

(1− α)3
ϕ2

4− α

(1− α)2(2− α)
,

so that, with the use of Equation (5.27), we get

ϕ2
4− α

(1− α)2(2− α)
= ϕ′2

4− α′

(1− α′)2(2− α′)
. (5.28)
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Similarly, by plugging the moments in the second order coefficient c2, we get

c2 =
π4

15

µα(2− α)

(1− α)3

(
ϕ2

4− α

(1− α)2(2− α)

)2
(2− α)(α3 − 8α2 + 18α+ 4)

(4− α)2
,

so that, by Equations (5.27) and (5.28),

g(α) =
(2− α)(α3 − 8α2 + 18α+ 4)

(4− α)2
=

(2− α′)(α′3 − 8α′2 + 18α′ + 4)

(4− α′)2
= g(α′) . (5.29)

But α 7→ g(α) can be shown to be strictly increasing for α ∈ (0, 1), so that Equation (5.29) yields
that α = α′. Finally, it is easily proven from the system composed by Equations (5.26)–(5.29)
that the tuples (µ, α, β, λ0) and (µ′, α′, β′, λ′0) are equal.

5.E Proof of Proposition 5.4.1

Let N be a bivariate noisy Hawkes process parametrised by the exponential model QΛ. We will
prove that if either of the conditions in Proposition 5.4.1 is fulfilled then QΛ is not identifiable.

• Condition 1: Let
Λ =

{(
α11 0
0 α22

)
, 0 ≤ α11, α22 < 1

}
.

For any admissible θ = (µ, α, β, λ0), the spectral matrix fNθ is diagonal such that, for any
integer i ∈ {1, 2}:

fNθ ii(ω) =
µi

1− αii

(
β2
i αii(2− αii)

β2
i (1− αii)2 + 4π2ω2

)
+

(
µi

1− αii
+ λ0

)
.

We will show that there exists an admissible θ′ = (µ′, α′, β′, λ′0) such that θ′ ̸= θ and
fNθ = fNθ′ . Let τ > −λ0 and λ′0 = λ0 + τ .

For every i ∈ {1, 2}, on the one hand, if αii ̸= 0 then, as shown in the univariate case
(Appendix 5.B), letting κi = µi

1−αii
β2
i αii(2− αii) and defining the parameters:

µ′
i =

βi(1−αii)(
µi

1−αii
−τ)√

β2
i (1−αii)2+

κi
µi

1−αii
−τ

α′
ii = 1− βi(1−αii)√

β2
i (1−αii)2+

κi
µi

1−αii
−τ

β′
i =

√
β2
i (1− αii)2 +

κi
µi

1−αii
−τ

,

(5.30)

leads to fNθ ii = fNθ′ ii.

On the other hand, if αii = 0 then, fNθ ii = µi + λ0 and it is enough to consider:
µ′
i = µi − τ

α′
ii = 0

β′
i = βi ,

to get fNθ ii = fNθ′ ii.
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In both cases, for τ ∈
(
−λ0,min1≤i≤2

{
µi

1−αii

})
\ {0}, we obtain an admissible parameter

θ′ ̸= θ and fNθ = fNθ′ . Thus, the model is not identifiable.

• Condition 2 and 3: Without loss of generality, let

Λ =

{(
α11 α12

0 0

)
, 0 < α11 < 1, α12 > 0

}
.

For any admissible parameter θ = (µ, α, β, λ0) and for any ω ∈ R, the spectral matrix
reads:

fNθ (ω) =

[
fNθ 11(ω) fNθ 12(ω)
fNθ 21(ω) fNθ 22(ω)

]
=

 fNθ 11(ω)
µ2β1α12

β1(1− α11) + 2πiω
µ2β1α12

β1(1− α11)− 2πiω
µ2 + λ0


with

fNθ 11(ω) =

(
µ1

1− α11
+

µ2α12

1− α11

)
β2
1α11(2− α11)

β2
1(1− α11)2 + 4π2ω2

+
µ2β

2
1α

2
12

β2
1(1− α11)2 + 4π2ω2

+
µ1

1− α11
+

µ2α12

1− α11
+ λ0 .

Let us introduce the following constants:

A = µ2 + λ0

B = µ2β1α12

C = β1(1− α11)

D = µ1+µ2α12

1−α11
+ λ0

E = (µ1+µ2α12

1−α11
)β2

1α11(2− α11) + µ2β
2
1α

2
12 ,

which allow us to rewrite the spectral matrix as:

fNθ (ω) =

 E

C2 + 4π2ω2
+D

B

C + 2πiω
B

C − 2πiω
A

 . (5.31)

Let τ ∈ R \ {µ2, (µ1 + µ2α12)/(1− α11)} and:

κτ =
(µ1 + µ2α12)α11(2− α11)(µ2 − τ)− τµ2

2α
2
12(1− α11)

(µ2 − τ)(µ1 + µ2α12 − τ(1− α11))
.

Now, consider the parameter θ′ = (µ′, α′, β′, λ′0), defined as follows:
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µ′
1 = µ1−τ(1−α11)√

(1−α11)2+κτ

µ′
2 = µ2 − τ

α′
11 = 1− 1−α11√

(1−α11)2+κτ

α′
12 = µ2α12

(µ2−τ)
√

(1−α11)2+κτ

β′
1 = β1

√
(1− α11)2 + κτ

λ′0 = λ0 + τ .

(5.32)

The goal will be to show that there exists τ such that θ′ is well defined, admissible for QΛ,
such that θ ̸= θ′ and fNθ = fNθ′ .

First, in order for θ′ to be an admissible parameter, let us remark that ρ(S) = α11 and so
we obtain the following constrains:

µ′
1 > 0

µ′
2 > 0

0 < α′
11 < 1

α′
12 > 0

β′
1 > 0

λ′0 > 0

⇐⇒



µ1 − τ(1− α11) > 0

µ2 − τ > 0
1−α11√

(1−α11)2+κτ

< 1

(1− α11)
2 + κτ > 0

λ0 + τ > 0

⇐⇒


τ < µ1

1−α11

τ < µ2

κτ > 0

τ > −λ0 .

(5.33)

Since τ < µ1/(1− α11) =⇒ µ1 + µ2α12 − τ(1− α11) > 0, the third inequality becomes

τ <
(µ1 + µ2α12)α11(2− α11)µ2

(µ1 + µ2α12)α11(2− α11) + µ2
2(1− α11)α2

12

.

Then for

τ ∈
(
−λ0,min

{
µ1

1− α11
, µ2,

(µ1 + µ2α12)α11(2− α11)µ2

(µ1 + µ2α12)α11(2− α11) + µ2
2(1− α11)α2

12

})
\ {0} ,

the right-hand side of Equations (5.33) is verified and so θ′ defined by Equations (5.32) is
well defined, admissible for QΛ and θ′ ̸= θ.

Then, we can show that:



µ′
2 + λ′0 = µ2 + λ0 = A

µ′
2β

′
1α

′
12 = µ2β1α12 = B

β′
1(1− α′

11) = β1(1− α11) = C
µ′
1+µ′

2α
′
12

1−α′
11

+ λ′0 = µ1+µ2α12

1−α11
+ λ0 = D(

µ′
1+µ′

2α
′
12

1−α′
11

)
β′
1
2
α′
11(2− α′

11) + µ′
2β

′
1
2
α′
12

2
=
(

µ1+µ2α12

1−α11

)
β2
1α11(2− α11) + µ2β

2
1α

2
12 = E .

This assures that, for all ω ∈ R:
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fNθ′ (ω) =

 E

C2 + 4π2ω2
+D

B

C + 2πiω
B

C − 2πiω
A

 = fNθ (ω) ,

Thus, the model is not identifiable.

5.F Proof of Proposition 5.4.2, Situations 1 and 2

Without loss of generality, let

Λ =

{(
α11 0
α21 0

)
, 0 ≤ α11 < 1, α21 > 0

}
.

Then, for any admissible parameter θ = (µ, α, β, λ0) and all ω ∈ R:

fNθ 11(ω) =
µ1

1− α11

β2
1 + 4π2ω2

β2
1(1− α11)2 + 4π2ω2

+ λ0

fNθ 12(ω) =
µ1

1− α11

β2
1 + 4π2ω2

β2
1(1− α11)2 + 4π2ω2

α21β2
β2 − 2πiω

fNθ 22(ω) =
µ1

1− α11

β2
1 + 4π2ω2

β2
1(1− α11)2 + 4π2ω2

α2
21β

2
2

β2
2 + 4π2ω2

+ µ2 +
µ1α21

1− α11
+ λ0 ,

and fNθ 21(ω) = fNθ 12
(ω).

These expressions can be reformulated as follows:

fNθ 11(ω) = mH
1

1

|1− h̃θ 11(ω)|2
+ λ0

fNθ 12(ω) = (fNθ 11(ω)− λ0)h̃θ 21(−ω)

fNθ 22(ω) =
|fNθ 12(ω)|

2

fNθ 11
(ω)− λ0

+ lim
ω′→+∞

fNθ 22(ω
′) .

where mH
1 = µ1/(1− α11), mH

2 = µ2 + µ1α21/(1− α11) and limω′→+∞ fNθ 22(ω
′) = mH

2 + λ0.
Let θ′ = (µ′, α′, β′, λ′0) be an admissible parameter such that fNθ = fNθ′ . For ω = 0, it comes

fNθ 22(0) = fNθ′ 22(0), which implies that

|fNθ 12(0)|
2

fNθ 11
(0)− λ0

=
|fNθ′ 12(0)|

2

fNθ′ 11
(0)− λ′0

.

Since |fNθ 12(0)|
2 = µ1α21(1− α11)

−3 ̸= 0 (as α11 < 1 and α21 > 0), fNθ 12(0) = fNθ′ 12(0) and
fNθ 11(0) = fNθ′ 11(0), it results that:

λ0 = λ′0 .

Now, for all ω ∈ R, since fNθ 12(ω) = fNθ′ 12(ω), it comes (fNθ 11(ω)−λ0)h̃θ 21(−ω) = (fNθ′ 11(ω)−
λ′0)h̃θ′,21(−ω), then h̃θ 21(ω) = h̃θ′,21(ω). By Equation (5.13), it results that:

α21β2
β2 + 2πiω

=
α′
21β

′
2

β′
2 + 2πiω

.
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For ω = 0, this simplifies to
α21 = α′

21 .

For ω = 1, as α21 ̸= 0 it comes β2/(β2 + 2πi) = β′
2/(β

′
2 + 2πi), then

β2 = β′
2 .

Now, by considering the limits as ω → ∞, we obtain the two following equations:
µ1

1− α11
+ λ0 =

µ′
1

1− α′
11

+ λ0

µ2 +
µ1α21

1− α11
+ λ0 = µ′

2 +
µ′
1α21

1− α′
11

+ λ0 ,

which, using that µ1 > 0, can be simplified to:
µ1

1− α11
=

µ′
1

1− α′
11

µ2 = µ′
2 .

Now, as fNθ 11(0) = µ1/(1− α11)
3, we have the two following equations:
µ1

1− α11
=

µ′
1

1− α′
11

µ1

(1− α11)3
=

µ′
1

(1− α′
11)

3
,

which imply {
µ1 = µ′

1

α11 = α′
11 .

At last, since fNθ 11(1) = fNθ′ 11(1) and µ1 > 0,

β2
1 + 4π2

β2
1(1− α11)2 + 4π2

=
β′
1
2
+ 4π2

β′
1
2(1− α11)2 + 4π2

,

which implies
α11(2− α11)β

2
1 = α11(2− α11)β

′
1
2
.

Either α11 > 0, so the previous equation leads to

β1 = β′
1 ,

or α11 = 0, so α′
11 = α11 = 0 and β1 = β′

1 = 1 (since θ and θ′ are admissible for the model) .
This proves that fNθ = fNθ′ =⇒ θ = θ′, which achieves the proof.
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5.G Proof of Proposition 5.4.2, Situations 3 and 4

Without loss of generality, let

Λ =

{(
α11 0
α21 α22

)
, 0 < α11 < 1, α21 > 0, 0 ≤ α22 < 1

}
.

Then, for any admissible parameter θ = (µ, α, β, λ0) and all ω ∈ R:

fNθ 11(ω) =
µ1

1− α11

β2
1α11(2− α11)

β2
1(1− α11)2 + 4π2ω2

+
µ1

1− α11
+ λ0

fNθ 12(ω) =
(
fNθ 11(ω)− λ0

) α21β2
β2
2(1− α22)2 + 4π2ω2

(β2(1− α22) + 2πiω)

fNθ 22(ω) =

(
µ1α21

(1− α22)(1− α11)
+

µ2

1− α22

)
β2
2 + 4π2ω2

β2
2(1− α22)2 + 4π2ω2

+

µ1α
2
21β

2
2

1− α11

β2
1 + 4π2ω2

(β2
2(1− α22)2 + 4π2ω2)(β2

1(1− α11)2 + 4π2ω2)
+ λ0 ,

and fNθ 21(ω) = fNθ 12
(ω).

Let θ′ = (µ′, α′, β′, λ′0) be an admissible parameter such that fNθ = fNθ′ . We start by showing
that λ0 = λ′0. From Re

(
fNθ 12(1)

)
= Re

(
fNθ′ 12(1)

)
and Im

(
fNθ 12(1)

)
= Im

(
fNθ′ 12(1)

)
, the

following system of equations is established:
(fNθ 11(1)− λ0)α21β2

β2
2(1− α22)2 + 4π2

β2(1− α22) =
(fNθ′ 11(1)− λ′0)α

′
21β

′
2

β′
2
2(1− α′

22)
2 + 4π2

β′
2(1− α′

22)

(fNθ 11(1)− λ0)α21β2

β2
2(1− α22)2 + 4π2

=
(fNθ′ 11(1)− λ′0)α

′
21β

′
2

β′
2
2(1− α′

22)
2 + 4π2

.

(5.34)

Since

fNθ 11(1)− λ0 =
µ1

1− α11

β2
1 + 4π2

β2
1(1− α11)2 + 4π2

̸= 0 ,

and α21β2 > 0, Equations (5.34) imply that

β2(1− α22) = β′
2(1− α′

22) . (5.35)

Now, from fNθ 12(0) =
(
fNθ 11(0)− λ0

)
α21/(1 − α22) and fNθ 11(0) − λ0 = µ1/(1 − α11)

3 ̸= 0,
it comes α21 = fNθ 12(0)(1 − α22)/

(
fNθ 11(0)− λ0

)
and the second equality of Equations (5.34)

implies that

fNθ 11(1)− λ0

fNθ 11
(0)− λ0

fNθ 12(0)β2(1− α22)

β2
2(1− α22)2 + 4π2

=
fNθ′ 11(1)− λ′0
fNθ′ 11

(0)− λ′0

fNθ′ 12(0)β
′
2(1− α′

22)

β′
2
2(1− α′

22)
2 + 4π2

. (5.36)

By Equation (5.35)
fNθ 12(0)β2(1− α22)

β2
2(1− α22)2 + 4π2

=
fNθ′ 12(0)β

′
2(1− α′

22)

β′
2
2(1− α′

22)
2 + 4π2

,
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and since α21 > 0, fNθ 12(0) ̸= 0 and Equation (5.36) leads to

fNθ 11(1)− λ0

fNθ 11
(0)− λ0

=
fNθ′ 11(1)− λ′0
fNθ′ 11

(0)− λ′0
.

Since fNθ 11 is strictly decreasing, fNθ 11(1)− fNθ 11(0) = fNθ′ 11(1)− fNθ′ 11(0) ̸= 0, and it comes
λ0 = λ′0.

Now, the expression of fNθ 11 is similar to that of the univariate spectral density fNθ in Propo-
sition 5.3.1. Thus, following the proof in Appendix 5.B, from fNθ 11 = fNθ′ 11 and λ0 = λ′0 (since
α11 > 0 and α′

11 > 0) it comes: 
µ1 = µ′

1

α11 = α′
11

β1 = β′
1 .

Next, from fNθ 12(0) = fNθ′ 12(0), it comes:

(
fNθ 11(0)− λ0

) α21

1− α22
=
(
fNθ′ 11(0)− λ′0

) α′
21

1− α′
22

,

which implies, with fNθ 11(0)− λ0 = fNθ′ 11(0)− λ′0 ̸= 0:

α21

1− α22
=

α′
21

1− α′
22

. (5.37)

Now, from limω′→∞ fNθ 22(ω
′) = limω′→∞ fNθ′ 22(ω

′),

µ1α21

(1− α11)(1− α22)
+

µ2

1− α22
=

µ1α
′
21

(1− α11)(1− α′
22)

+
µ′
2

1− α′
22

,

and leveraging Equation (5.37), it comes:

µ2

1− α22
=

µ′
2

1− α′
22

. (5.38)

Moreover,

fNθ 22(0) =

(
µ1α21

(1− α11)(1− α22)
+

µ2

1− α22
+

µ1α
2
21

(1− α11)3

)
1

(1− α22)2
+ λ0

=

(
µ1

1− α11

α21

1− α22
+

µ2

1− α22

)
1

(1− α22)2
+

µ1

(1− α11)3
α2
21

(1− α22)2
+ λ0 .

Thus, by Equations (5.37) and (5.38), we obtain from fNθ 22(0) = fNθ′ 22(0):

1

(1− α22)2
=

1

(1− α′
22)

2
,

which implies
α22 = α′

22 .

To conclude, from Equations (5.35), (5.38) and (5.37), β2 = β′
2, µ2 = µ′

2 and α21 = α′
21. This

proves that fNθ = fNθ′ =⇒ θ = θ′, which achieves the proof.
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A numerical exploration of thinned Hawkes

processes through spectral theory

Standard estimation methods for Hawkes processes with missing information are either in-
tractable or computationally expensive. Nonetheless this is a common scenario when studying
real-world data where detection procedures may miss event times, which can be modelled through
the thinning alteration of point processes. We assume that we observe a thinned version of a
Hawkes process and we propose a parametric estimation procedure by maximising a version of
the log-likelihood from spectral analysis theory. We propose identifiability conditions for the
ensuing statistical model for the classical exponential kernel functions and the performance of
our estimator is studied on simulated data. Our inference method gives access to a subsampling
method for our point processes via the thinning operation. We propose to use this paradigm to
enhance the performance of a penalised version of the spectral estimator. Numerically, we show
that, in a small-sized sample context with a short observation windows, this estimator performs
better than alternative approaches.
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6.1 Introduction

The Hawkes process model, introduced for the first time in Hawkes (1971), is a past-dependent
point process used to characterise self-exciting interactions among event times. Its applications
are numerous among various fields with examples including sociology (Linderman et al. 2014),
biology (Gupta et al. 2018; Lambert et al. 2018; Rizoiu et al. 2018), seismology (Ogata 1988;
Ogata 1998) and finance (Bacry et al. 2013; Bacry et al. 2015; Hawkes 2018), to mention a few.

As a result, there are many efforts focused around proposing estimation methods. These
include estimators obtained through likelihood maximisation (Ogata 1978; Ozaki 1979), least-
squares error minimisation (Reynaud-Bouret et al. 2014; Bacry et al. 2020) and method of
moments (Da Fonseca et al. 2013), in both parametric and non-parametric settings.

Most of these methods tend to study the model under the assumption that there is no
missing data in the samples used for estimation. However, if this assumption does not hold, it
is common for estimators to be biased. Some works in the literature consider different missing
or imperfect data contexts such as binned observations in Cheysson et al. (2022), jittering (or
random displacement) as exemplified in Antoniadis et al. (2006) and Bonnet et al. (2022b),
superposition as in Bonnet et al. (2024).

Jittering and superposition are two of the three most common alterations on point processes,
along with thinning. Thinning is more often used in simulation scenarios for point processes, with
the main example being Ogata’s thinning procedure (Ogata 1981) or to accelerate estimations
as a method of downsampling (Li et al. 2019). Nonetheless, the use of thinning to model missing
data is scarcer in the literature, which could be useful in order to account for sporadic detection
errors.

A main work focusing on noised data for both point processes and proposing numerical
applications to Hawkes processes can be found in Lund et al. (2000). They propose a conditional
log-likelihood model for point process that have been noised through the three classic operations
in the field: jittering, superposition and thinning. Their method consists in establishing an
expression of such a log-likelihood when the base point process (or an estimation of it) is available.
They obtain an approximation of a maximiser through some simplifications and an iterative
optimisation on a small space of parameters. The main obstacle that arises in this context is
that it is essential to have some information on the ground process in order to estimate the
parameters associated with each noise.

In this chapter, we take inspiration from the spectral estimation methods as presented in
Cheysson et al. (2022) and Bonnet et al. (2024). Spectral theory for point processes was properly
introduced for the first time in Bartlett (1963), focusing around the Bartlett spectrum. Works
concerning the spectral study and estimation of point processes subsequently appeared in the
literature with numerous theoretical approaches in temporal and spatial contexts (Daley 1971;
Tuan 1981; Mugglestone et al. 2001; Rajala et al. 2023). Practical applications are scarcer,
with an application to multiple clustering models, including Hawkes processes, in Adamopoulos
(1976), in Karavasilis et al. (2007) to stationary bivariate processes and in Roueff et al. (2019)
to a locally stationary version of the Hawkes process.

In our work, we explicit the form of the Bartlett spectrum for a point process thinned with
independent and identically distributed probabilities. In particular, we follow a similar scheme
as the one presented for the superposition of point processes in Bonnet et al. (2024) to establish
an estimation method by maximising the spectral log-likelihod, with a particular interest in the
univariate Hawkes process with exponential kernel.

A second contribution of our work focuses on the thinning operation as a tool to provide
a subsampling scheme for point processes. This approach has been explored mainly in spatial
contexts (Møller et al. 2003; Moradi et al. 2019; Cronie et al. 2024) showing the advantages of
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considering thinning for point processes, either for improving estimations, or for proposing cross-
validation procedures in spatio-temporal contexts, as in Coeurjolly et al. (2024). Our effort in
this chapter consists in illustrating its use for spectral estimators when combined with a penalised
version of the log-likelihood.

After a general presentation of the mathematical setting in Section 6.2 for both thinning
and spectral theory of point processes, we introduce the results concerning the spectral density
function for thinned point processes in Section 6.3.1. We leverage this result in the case of a
Hawkes process with exponential kernel in Section 6.3.2 along with an identifiability condition for
the statistical model. Finally, we illustrate the performance of our estimation procedure in the
context of missing data in Section 6.4.1, and for enhancing estimation through ℓ2 penalisation
with subsampling in Section 6.4.2

6.2 Mathematical setting

6.2.1 The p-thinned point processes
In this chapter, we will focus on the stationary univariate Hawkes process on the real line R,
noted H. The Hawkes process can be characterised by its conditional intensity function defined,
for all t ∈ R, by:

λ(t) = µ+

∫ t

−∞
h(t− s)H(ds) = µ+

∑
Tk≤t

h(t− Tk) , (6.1)

where µ > 0 is the baseline intensity, and h : R → R≥0 is the kernel function modelling the
self-exciting behaviour of past events (Tk)k∈Z.

In order for H to be a point process (i.e. an a.s. finite measure in any bounded set B), a
sufficient and necessary condition (Hawkes 1971) is that

∥h∥1 =

∫
R
h(t) dt < 1 .

Let Bc
R denote the set of bounded Borel sets on R, and let, for any B ∈ Bc

R:

H(B) =
∑
k∈Z

1Tk∈B

be the number of event times in B.
In this chapter, we will study a thinned version of process H defined as follows:

Definition 6.2.1. For any p ∈ (0, 1], we denote Hp a p-thinning of a point process H, defined
for any B ∈ Bc

R as:
Hp(B) =

∑
k∈Z

1Tk∈BZk

where (Zk)k∈Z is an i.i.d. collection of Bernoulli random variables of parameter p. We refer to
Hp as a p-thinned point process.

In practice, the event times of process Hp correspond to a subset of (Tk)k∈Z where each point
is erased with a random probability 1 − p. Setting p = 1 keeps all original points from process
H which is not a proper thinning per se, but we include this value in order to lighten notations
in the incoming sections.
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6.2.2 Spectral theory for point processes
For a point process H, we define the first and second-order measures M1 and M2, for any
A,B ∈ Bc

R, by:
M1(A) = E[H(A)] , M2(A,B) = E[H(A)H(B)] .

Under stationarity conditions, it follows that (Daley et al. 2003, Proposition 8.1.I), for any
A,B ∈ Bc

R:
M1(A) = m1ℓR(A) ,

where m1 = E[H([0, 1])] is usually known as the average intensity of process H.
The spectral analysis approach of point processes is based on the Bartlett spectrum Γ (Bartlett

1963), a complex-valued measure on R associated with the second-order moment measure M2.
To introduce it properly, let us consider the Schwartz space S defined as:

S =

{
f ∈ C∞,∀k ∈ {1, 2, . . . },∀r ∈ {1, 2, . . . }, sup

x∈R

∣∣∣xrf (k)(x)∣∣∣ <∞
}
,

where C∞ denotes the set of infinitely differentiable functions f from R to R, and f (k) denotes
the kth-order derivative of f . For any f ∈ S, we define its Fourier transform f̃ , for any ω ∈ R,
by:

f̃(ω) =

∫
R
f(x)e−2πixω dx .

The Bartlett spectrum of a point process H is the measure Γ such that, for any φ ∈ S
(Brémaud et al. 2005, Definition 2):

V
[∫

R
φ(x)H(dx)

]
=

∫
R
|φ̃(ω)|2 Γ(dω) . (6.2)

Existence of such a measure is established for any stationary point process (Daley et al. 2003,
Proposition 8.2.I.(a)), and by polarisation of Equation (6.2), we obtain for any φ,ψ ∈ S:

cov

(∫
R
φ(x)H(dx),

∫
R
ψ(x)H(dx)

)
=

∫
R
φ̃(ω)ψ̃(−ω) Γ(dω) . (6.3)

Whenever Γ is an absolutely continous measure, we denote f : R → C its Radon-Nikodym
derivative, known as the spectral density of process H.

Another important quantity in the spectral theory of point processes is the periodogram
IT : R → C. For a realisation (Tk)k=1:N(T ) of a process H in a time window [0, T ], the peri-
odogram is defined, for all ω ∈ R, as:

IT (ω) =
1

T

N(T )∑
k=1

N(t)∑
l=1

e−2πiω(Tk−Tl) .

Furthermore, for any sequence (ωk)k=1:M , such that ωk ̸= ωl, for all integers k ̸= l, the
random variables (IT (ωk))k=1:M are asymptotically independent and exponentially distributed
(Tuan 1981) with respective parameter (1/f(ωk))k=1:M .

In this chapter, we will work on a parametric setting, so let a statistical model P for the
spectral density be defined as:

P = {fθ : R → C, θ ∈ Θ} .
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We can then define the spectral log-likelihood ℓT (θ) for an observation (Tk)k=1:N(T ) of H as:

ℓT (θ) = − 1

T

M∑
k=1

log(fθ(ωk)) +
IT (ωk)

fθ(ωk)
. (6.4)

We can then introduce the Whittle estimator θ̂ (Whittle 1952) as:

θ̂ = argmax
θ∈Θ

ℓT (θ) .

6.3 Parametric estimation of a thinned process

6.3.1 The spectrum of a thinned point process
The goal of this chapter is to establish a parametric estimation method for the observation of
a thinned Hawkes process. We will leverage the study of spectral quantities on marked point
processes, which can be found in Brémaud et al. (2002) and Brémaud et al. (2005).

For this purpose, let us introduce an alternative way of viewing the p-thinning of a point
process through marked point process theory (as also done in Cronie et al. (2024)). In this
section, H will denote a stationary point process on R with Bartlett spectrum ΓH and spectral
density function fH .

We define the marked point process H̄ associated with H, with marks Zk on a metric space
K as the collection of points (Tk, Zk)k∈Z ∈ (R × K)Z (see Daley et al. (2003, Chapter 6.4) for
a more thorough presentation of marked point processes). The random marks Zk are usually
used to represent underlying information on the event times of a point process H, which is often
referred to as the ground process. In our work, we will restrict ourselves to the case where the
random variables (Zk)k∈Z are independent and identically distributed. In this setting, process
H̄ is well-defined (Daley et al. 2003, 6.4.IV(a)).

We can then view a p-thinning of H as a marked version H̄ where K = {0, 1} and the
(Zk)k∈Z are a collection of Bernoulli random variables of parameter p. This way we may define
the thinned process Hp, for any B ∈ Bc, as:

Hp(B) = H̄(B × {1}) .

Under this scope, we will apply the results of Brémaud et al. (2005), that we adapt to our
notations.

Theorem 6.3.1 (Brémaud et al. (2005, Theorem 2)). Let H be a stationary point process with
Bartlett spectrum measure Γ and let H̄ be a marked version of H with i.i.d. marks Zk with shared
distribution Z on a metric space K. Let φ⋆, ψ⋆ be measurable functions from R × K → R, such
that:

•
∫
R
E [|φ⋆(x, Z)|] dx < +∞ ,

∫
R
E [|ψ⋆(x, Z)|] dx < +∞ .

•
∫
R
E
[
φ⋆(x, Z)2

]
dx < +∞ ,

∫
R
E
[
ψ⋆(x, Z)2

]
dx < +∞ .

• By denoting φ̄ : x→ E [φ⋆(x, Z)] and ψ̄ : x→ E [ψ⋆(x, Z)],

φ̄, ψ̄ ∈ S .
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Then, it follows that:

cov

(∑
k∈Z

φ⋆(Tk, Zk),
∑
k∈Z

ψ⋆(Tk, Zk)

)
=

∫
R
˜̄φ(ω) ˜̄ψ(−ω) ΓH(dω) (6.5)

+

∫
R
cov

(
φ̃⋆(ω,Z), ψ̃⋆(−ω,Z)

)
M1(dω) ,

where, for any ω ∈ R, φ̃⋆(ω,Z) (resp. ψ̃⋆(ω,Z)) denotes the Fourier transform of the function
x→ φ⋆(x, Z) (resp. x→ ψ⋆(x, Z)).

The utility of this result lies on the link that it establishes between the covariance of a marked
point process H̄ and the Bartlett spectrum of its ground process H. This allows to establish an
expression of the spectral density of the p-thinning of a process H, as presented in the following
proposition:

Proposition 6.3.1. Let H be a stationary point process admitting a Bartlett spectrum ΓH defined
as in Equation (6.2). We assume that ΓH is absolutely continuous and we note fH the spectral
density function. Let m1 be the average intensity of H.

For any p ∈ (0, 1], let Hp be a p-thinning of H as explicited in Definition 6.2.1.
Then, Hp admits a spectral density function, denoted fHp , such that for any ω ∈ R:

fHp(ω) = p2fH(ω) + p(1− p)m1 . (6.6)

Proof. The proof is given in Appendix 6.A

Let us remark that Equation (6.6) can be found in Daley et al. (2003, Equation 8.3.5), where
they obtain this result by term identification of a bivariate point process. The proof presented
in this chapter is an alternative way of establishing this expression, illustrating the usefulness of
leveraging the spectral theory of point processes.

6.3.2 The p-thinned Hawkes process estimation and the exponential
kernel

For the rest of this chapter, H will denote a stationary Hawkes process defined by the intensity
λ as in Equation (6.1).

As shown in Hawkes (1971), the spectral density of a Hawkes process reads, for all ω ∈ R:

fH(ω) =
µ

(1− ∥h∥1)|1− h̃(ω)|2
.

Corollary 6.3.1, presents the spectral density of the p-thinned univariate Hawkes process:

Corollary 6.3.1. Let H be a stationary univariate Hawkes process with baseline intensity µ > 0,
and kernel function h : R → R>0, as defined by Equation (6.1). Let p ∈ (0, 1] and Hp a p-thinning
of H. Then the spectral density fHp of Hp is:

∀ω ∈ R , fHp(ω) = p2
µ

(1− ∥h∥1)|1− h̃(ω)|2
+ p(1− p)

µ

1− ∥h∥1
. (6.7)

Proof. The proof is direct by applying Proposition 6.3.1 and with the expression of the Hawkes
process spectral density and m1 the mean number of points of a Hawkes process given by m1 =
µ/(1− ∥h∥1).
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We can define the statistical model:

P = {fθ : R → C, θ = (µ, γ, p) ∈ Θ} ,

where γ is a parameter of the interaction function h. From now on, we will drop the superscript
on the spectral density function as specifying θ removes any ambiguity concerning the value of p
and whether the point process is thinned or not. It is then possible to estimate θ by maximising
the spectral log-likelihood (Equation (6.4)).

Let us now focus on the exponential interaction function, defined as:

∀t ∈ R , h(t) = αβe−βt1t≥0 ,

where α ∈ (0, 1) and β > 0.
The Fourier transform of h is explicit and reads:

h̃(ω) =
αβ

β + 2πiω
,

and so Equation (6.7) reduces to:

∀ω ∈ R , fθ(ω) =
µp

1− α

(
1 + p

β2α(2− α)

β2(1− α)2 + 4π2ω2

)
. (6.8)

In this context, the statistical model of fθ is:

Q = {fθ : R → C, θ = (µ, α, β, p) ∈ R>0 × (0, 1)× R>0 × (0, 1]} .

Similarly to the superposition case shown in Bonnet et al. (2024, Proposition 3.2), model Q is
not identifiable in the general setting but identifiability can be retrieved, as shown in Proposi-
tion 6.3.2, as long as one parameter of the model is fixed.

Proposition 6.3.2. The model Q is identifiable if and only if one of the parameters in the
4-uplet (µ, α, β, p) is fixed.

In particular, for any admissible parameter θ = (µ, α, β, p), for any κ ∈ (0, 1/p], let:

µ′ = µ

κ(1−α)

√
1+ 1

κ

(
1

(1−α)2
−1

)
α′ = 1− 1√

1+ 1
κ

(
1

(1−α)2
−1

)
β′ = β(1− α)

√
1 + 1

κ

(
1

(1−α)2 − 1
)

p′ = κp .

(6.9)

Then, θ′ = (µ′, α′, β′, p′) is an admissible parameter such that fθ = fθ′ .

Proof. The proof is given in Appendix 6.B.

The non-identifiability of the full model (four unknown parameters) limits the implementation
of an estimation method for θ ∈ Θ, but this problem is avoided as long as one of the parameters
is known beforehand. In this work we will focus on the scenario where the value of p is known
in advance, and so the previous result ensures that, for any p⋆ ∈ (0, 1], the reduced model:
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Qp = {fθ : R → C, θ = (µ, α, β, p) ∈ Θ = R>0 × (0, 1)× R>0 × (0, 1], p = p⋆} ,

is identifiable. We can then define an estimator θ̂ = (µ̂, α̂, β̂, p̂) of θ with p̂ = p⋆, as presented at
the end of Section 6.2.2, as:

θ̂ = argmax
θ∈Θ

ℓT (θ) = argmax
θ∈Θ

(
− 1

T

M∑
k=1

log(fθ(ωk)) +
IT (ωk)

fθ(ωk)

)
.

6.4 Numerical illustrations

In this section, we will study the estimation of p-thinned Hawkes processes obtained by max-
imising the spectral lof-likelihood defined in Equation (6.4) under the mathematical model Qp,
and unless said otherwise, p will be fixed to the true value p⋆ used for thinning.

Simulation is done by leveraging the cluster and branching representation of self-exciting
Hawkes processes (Hawkes et al. 1974), which is explicited in Møller et al. (2005, Algorithm 2).
In order to approximate the stationarity condition of the Hawkes process, for any simulation
window [0, T ] considered in our study, we will initially simulate the process in [−100, T ] to avoid
edge effects.

Our numerical procedure is implemented in Python and optimisation of all considered func-
tions in this section will be done via the minimize method with the L-BFGS-B solver (Byrd et al.
1995).

To evaluate the performance of our estimator θ̂ against any set of parameters θ, we will
consider its relative ℓ2 error defined as:

∥θ̂ − θ∥2
∥θ∥2

.

6.4.1 Spectral estimator for missing data

In this subsection, we will study the performance of estimator θ̂ for different levels of p. We
simulate 100 different Hawkes processes (H1, . . . ,H100) with exponential kernel with parameters:

µ = 1.25 , α = 0.5 , β = 1.5 ,

and the following grid of values for thinning:

p ∈ {0.1, 0.2, . . . , 0.9} .

We perform then a p-thinning of each simulation obtaining the thinned sample (H1
p , . . . ,H

100
p ).

For each level p, we will consider an observation window [0, Tp] with Tp chosen so that the average
number of points after thinning is constant equal to 5000. By remarking that:

E[Hp([0, Tp])] = pE[H([0, Tp])] =
pµ

1− α
Tp ,

it follows that Tp = 5000(1 − α)/(pµ). This ensures that for each scenario, all estimations take
into account the same amount of information on average.

We will consider two different estimators in order to show the advantage of taking thinning
into account. For each Hi

p, the first estimator θ̂p is obtained by estimating in the correct model
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Qp and we will compare it to the estimator θ̂1 obtained by maximising Equation (6.4) for p =

1. Estimator θ̂1 corresponds to making the assumption that observations (H1
p , . . . ,H

100
p ) are

univariate Hawkes processes that have not been thinned.
Figure 6.1 represents the boxplots of relative square errors for each parameter estimation in θ̂p

and θ̂1 in logarithmic scale. As expected, θ̂p performs significantly better than θ̂1, in particular for
higher levels of thinning (lower values of p). We can see that estimations are especially improved
when estimating µ and α, which are the two parameters controlling the average number of points
of H, that we recall here:

E[H([0, T ])] = m1Tp =
µTp
1− α

.

Let us remark that the performance of θ̂ is fairly consistent accross all considered values of p.
This is particularly encouraging as the more points are erased, interaction between points are
attenuated and so the optimisation task is more difficult.
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Figure 6.1: Boxplots of ℓ2 relative error in log-scale with respect to level of thinning p. Estima-
tions for each parameter on the correct thinned model (red boxes) and on the model without
accounting for thinning (blue boxes).

6.4.2 p-thinning as a subsampling method
In this section, we assume that we are provided with a single and short observation H of a
Hawkes process for the same parameters:

µ = 1.25 , α = 0.5 , β = 1.5 ,

in an observation window of [0, 50]. The lack of multiple repetitions and the small window size
tend to negatively affect estimation procedures for point processes.

A common practice to improve estimations in such contexts is to consider a penalised version
of the to-be-optimised function, in our case, the spectral log-likelihood (Equation (6.4)). We
define then the ℓ2-penalised spectral log-likelihood, for any penalisation parameter L ≥ 0, as:

ℓT (θ)− L∥θ∥2 . (6.10)

A penalised estimator can then by obtained by maximising this quantity. In this penalised
setting, we will illustrate how combining the ℓ2 penalisation with a subsampling procedure by
thinning provides better results than other approaches.
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Benchmark estimators. As our work in this chapter concerns mainly the study of spectral
approaches, we will solely take into consideration estimators obtained through such means. We
will compare then four estimators:

• θ̂: the estimator obtained by maximising the non-penalised spectral log-likelihood (Equa-
tion (6.4)) on the single observation H.

• θ̂L: the estimator obtained by maxising the penalised spectral log-likelihood (Equation (6.10))
on the single observation H.

• θ̂Lpartition: we partition the observation window [0, T ] in I equally sized intervals:[
iT

I
,
(i+ 1)T

I

]
,

for i ∈ {0, . . . , I − 1}. For each window, we obtain a penalised estimator by maximising
Equation (6.10), and finally we obtain θ̂Lpartition by averaging all estimations. This is similar
to subsampling by means of covering regions (Possolo 1991; Politis et al. 1999; Guan et al.
2007).

• θ̂Lthinning: we perform S different thinning procedures for a fixed p ∈ (0, 1) providing the
p-thinned observations H1, . . . ,HS of H. For each Hs, we obtain a penalised estimation
by maximising Equation (6.10) on the statistical model Qp and we obtain θ̂Lthinning by
averaging all estimations.

θ̂Lpartition corresponds to a common practice in point processes theory used to split an obser-
vation into multiple samples, which is particularly useful for large values of T .

Our proposed estimator θ̂Lthinning can be seen as an estimator obtained through a subsampling
procedure, similar to the Bernoulli subsampling scheme (see for example Särndal et al. (2003,
Chapter 3.2)).

Choice of hyperparameters. We focus on studying the efficiency of all four methods and so
we consider the following grids for the hyper-parameters I, p and L:

I ∈ {2, 3, 4, 5} , p ∈ {0.1, . . . , 0.9} , L ∈ {10−6, 10−5, . . . , 102} .

Concerning the subsampling parameter of θ̂Lthinning, we fix it at S = 3 but we remark that all
presented results are consistent for other values of S. Proposing a model selection procedure
to choose the optimal hyper-parameters I, p, L is out of the scope of this work, so we solely
present the best estimators obtained through each method in the sense of the relative ℓ2 error
with respect to the true parameters of the model.

Results. Figure 6.2 represents the ℓ2 relative error for each estimator over 1000 different sim-
ulations. We ordered all curves so that the error of our proposed estimator θ̂Lthinning is shown in
ascending order. We can initially observe that the non-penalised estimations θ̂ often attain high
ℓ2 relative errors with high variability, which are greatly improved by the penalised methods.
Overall, our estimations θ̂Lthinning present lower errors than the other estimations (dashed lines).

This can be confirmed in Table 6.1 displaying the proportion of times that each estimator
outperforms the others. The non-penalised method provides by far the weakest estimator with
a notably high MSRE when estimating β, which is consistently known as the hardest parameter
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Figure 6.2: ℓ2 relative error of all four estimators without penalisation (blue), with penalisation
(orange), with penalisation and subsampling by partition (green) and our proposed method
with penalisation and subsampling by thinning (red). 1000 independent samples are shown and
samples are sorted so to display the error of θ̂Lthinning in ascending order.

to estimate in other parametric inference settings (see in Lemonnier et al. (2014) the discussion
on the non-concavity of the log-likelihood). The three penalised methods greatly improve the
estimations, in particular for β, significantly reducing MSRE all around. We notice that the
lowest MSRE are obtained by our thinning method, with it being in most scenarios the best
method all around. This is a testimony of the advantages of the subsampling and penalisation
procedure that we propose in this work.

Estimator MSRE
% best

µ̂ α̂ β̂ θ̂

θ̂ 0.18 0.13 5.14× 102 2.85× 102 1%
θ̂L 0.12 0.09 0.13 0.12 6.7%

θ̂Lpartition 0.08 0.07 0.04 0.05 22.3%
θ̂Lthinning 0.03 0.04 0.02 0.02 70%

Table 6.1: Mean square relative error (MSRE) of (µ, α, β) along with the MSRE of θ. Last
column shows the proportion of times that each estimator achieves the lower relative ℓ2 error
accross all 1000 simulations.
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6.5 Discussion

In this chapter, we leverage the spectral theory of point processes to present a parametric es-
timation procedure for thinned versions of univariate Hawkes processes. A first motivation for
studying this model concerns the study of imperfect data and we showcase the efficiency of the
spectral analysis to tackle such problems. This approach does not come without some issues, as
we show that the underlying spectral density model is not identifiable without additional infor-
mation on the parameter to be estimated. However, we highlight the efficiency of our estimation
method once that identifiability is recovered, which is a step towards improving estimation in
situations with potential missing event times. Our second contribution is to make use of thinning
as a tool to perform subsampling in scenarios with short observations of processes. By intro-
ducing a penalised version of the spectral log-likelihood and combining this with subsampling,
we demonstrate that we are able to significantly improve estimations. This is encouraging for
real-world applications, such as in health or biology, where acquiring sizeable quantities of data
can be difficult.

The main extension of our work would be to adapt our methods to higher dimensional data
in order to consider multiple inter-connected phenomena, for instance in epidemiology, social
interaction or neurobiology. In particular, our idea of introducing a subsampling approach for
penalised optimisation methods is highly motivated by the high interest in Lasso approaches for
multivate point processes (Reynaud-Bouret et al. 2013; Hansen et al. 2015; Bacry et al. 2020).
This kind of regularisation is used in order to determine a sparse matrix of interaction for high-
dimensional networks where only few connections between individuals exist. As these approaches
tend to require a high amount of information or samples in order to perform well, adapting our
subsampling scheme would make their use more accessible. A last avenue of exploration would
be to propose a model selection procedure adapted to spectral approaches in order to choose
the hyper-parameters of the penalised and subsampling methods in practical contexts where
information on the real parameters is unavailable.

6.A Proof of Proposition 6.3.1

Let Hp be a p-thinning of a stationary point process H admitting a Bartlett spectrum ΓH

and a spectral density function fH . The stationarity of Hp is given by the fact that the vari-
ables (Zk)k∈Z are i.i.d. and so for any integer r, for any B1 . . . , Br ∈ Bc, the random vector
(Np(Bk)k=1:r) has the same distribution as (Np(Bk+t)k=1:r), for any t ∈ R. We will then denote
ΓHp and fHp respectively the Bartlett spectrum and spectral density function of Hp

In order to establish Equation (6.6), we will leverage Theorem 6.3.1. We consider then the
marked version H̄ of H where the marks Zk are i.i.d. Bernoulli distributions with common
probability p.

Let φ,ψ ∈ S, we define, for all x, z ∈ R× {0, 1}, the functions:

φ⋆(x, z) = φ(x)z , ψ⋆(x, z) = ψ(x)z .

Let us verify that these functions satisfy the conditions of Theorem 6.3.1. Without loss of
generality, we will work uniquely with φ⋆, as the arguments are exactly the same for ψ⋆.

For any x ∈ R, φ⋆(x, Z) = φ(x)Z for Z a Bernoulli distribution of parameter p. It follows
that φ⋆(x, Z) admits a first and second order moment, and as φ ∈ S, φ(x)Z is integrable and
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twice integrable, which shows that:∫
R
E [|φ⋆(x, Z)|] dx < +∞ ,

∫
R
E
[
φ⋆(x, Z)2

]
dx < +∞ .

Furthermore, for any x ∈ R, φ̄(x) = φ(x)E[Z] = pφ(x), and so, as the Schwartz space is closed
under scalar mutliplication, it follows that φ̄ ∈ S.

We can then apply Equation (6.5) to our marked process H̄. For this, let us notice that:∑
k∈Z

φ⋆(Tk, Zk) =
∑
k∈Z

φ(Tk)Zk =

∫
R
φ(t)Hp(dt) ,

with the same expression holding for ψ⋆ and ψ. So, the left-hand side of Equation (6.5) reads:

cov

(∑
k∈Z

φ⋆(Tk, Zk),
∑
k∈Z

ψ⋆(Tk, Zk)

)
= cov

(∫
R
φ(t)Hp(dt),

∫
R
ψ(t)Hp(dt)

)
=

∫
R
φ̃(ω)ψ̃(−ω) ΓHp(dω) , (6.11)

where the last equality comes from Equation (6.3).
For the left-hand side, let us remark that φ̄(x) = pφ(x) for any x ∈ R and so, for any ω ∈ R,

˜̄φ(ω) = pφ̃(ω) ,

and,
ϕ̃⋆(ω,Z) = ϕ̃(ω)Z .

The right-hand side of Equation (6.5) becomes:

∫
R
˜̄φ(ω) ˜̄ψ(−ω) ΓH(dω)+

∫
R
cov

(
φ̃⋆(ω,Z), ψ̃⋆(−ω,Z)M1(dω)

)
=

∫
R
p2φ̃(ω)ψ̃(−ω) ΓH(dω) +

∫
R
φ̃(ω)ψ̃(ω) cov (Z,Z)M1(dω)

=

∫
R
φ̃(ω)ψ̃(−ω) (p2ΓH(dω) + p(1− p)M1(dω)) . (6.12)

By combining both sides (Equations (6.11) and (6.12)) it follows that, for any φ,ψ ∈ S:∫
R
φ̃(ω)ψ̃(−ω) ΓHp(dω) =

∫
R
φ̃(ω)ψ̃(−ω) (p2ΓH(dω) + p(1− p)M1(dω)) .

As this equality holds for any functions in the Schwartz space, by duality of the Fourier
transform (Pinsky 2008), then,

Γp = p2Γ + p(1− p)M1 ,

and as M1 = m1ℓR,
fp(ω) = p2f(ω) + p(1− p)m1 ,

which achieves the proof.
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6.B Proof of Proposition 6.3.2

Let θ = (µ, α, β, p) and θ′ = (µ′, α′, β′, p′) be two admissible parameters for model Q.
In order to prove that model Q is identifiable if and only if one of four parameters is fixed,

we will begin by retrieving the system of Equations (6.9) and verify that it defines an admissible
parameter for Q. Subsequently we will verify that by fixing one parameter, we retrieve the
identifiability of the model.

We begin by assuming that fθ = fθ′ . By Equation (6.8), this equality reads:

∀ω ∈ R,
µp

1− α

(
1 + p

β2α(2− α)

β2(1− α)2 + 4π2ω2

)
=

µ′p′

1− α′

(
1 + p′

β′2α′(2− α′)

β′2(1− α′)2 + 4π2ω2

)
.

Let us remark that a sufficient condition for both sides to be equal, for all ω ∈ R, is that the
following system of equations is verified:

µp
1−α = µ′p′

1−α′

pβ2α(2− α) = p′β′2α′(2− α′)

β(1− α) = β′(1− α′) ,

(6.13)

as this would mean that the three constants (w.r.t. ω) in both sides are equal. In fact this is
also a necessary condition as the three equalities can be retrieved for f(0), limω→+∞ f(ω) and
f(1) and combining the equations.

Let κ ∈ (0, 1/p) and p′ = κp, which reduces the system of Equations (6.13) to:


µ

1− α
=

µ′κ

1− α′ (6.14a)

β2α(2− α) = κβ′2α′(2− α′) (6.14b)
β(1− α) = β′(1− α′) , (6.14c)

As α < 1, α′ < 1, β > 0 and β′ > 0, Equation (6.14c) can be expressed as:

β′2 =
β2(1− α)2

(1− α′)2
,

and by replacing β′2 in Equation (6.14b), we obtain:

α(2− α)

(1− α)2
= κ

α′(2− α′)

(1− α′)2
(6.15)

⇐⇒ 1− (1− α)2

(1− α)2
= κ

1− (1− α′)2

(1− α′)2

⇐⇒ 1 +
1

κ

(
1

(1− α)2
− 1

)
=

1

(1− α′)2
,

and as α ∈ (0, 1), the left-side term is positive and so:

α′ = 1− 1√
1 + 1

κ

(
1

(1−α)2 − 1
) .
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We can then obtain the explicit expressions of µ′ and β′ with Equations (6.14a) and (6.14c)
providing the following system:



µ′ = µ(1−α′)
κ(1−α)

α′ = 1− 1√
1+ 1

κ

(
1

(1−α)2
−1

)
β′ = β 1−α

1−α′

p′ = κp

⇐⇒



µ′ = µ

κ(1−α)

√
1+ 1

κ

(
1

(1−α)2
−1

)
α′ = 1− 1√

1+ 1
κ

(
1

(1−α)2
−1

)
β′ = β(1− α)

√
1 + 1

κ

(
1

(1−α)2 − 1
)

p′ = κp .

(6.16)

To verify that, for any κ ∈ (0, 1/p), parameter θ′ = (µ′, α′, β′, p′) is an admissible parameter,
we have to make sure that θ′ ∈ Θ = R>0 × (0, 1) × R>0 × (0, 1). Let θ = (µ, α, β, p) ∈ Θ,
κ ∈ (0, 1/p) and θ′ defined by Equations (6.16). For such a κ, p′ ∈ (0, 1) is immediately verified.

The rest of the conditions are verified if and only if:√
1 +

1

κ

(
1

(1− α)2
− 1

)
> 1 ⇐⇒ 1

(1− α)2
− 1 > 0, .

This is immediate as α ∈ (0, 1) and so θ′ ∈ Θ. From Equations (6.16) we can see that θ′ = θ and
we have proven that fθ = fθ′ , so model Q is not identifiable.

Lastly, let us show that if any of the four parameters is known then the model defined by
the remaining triplet is identifiable. By considering the previously established equations (see
Equations (6.15) and (6.16)), we know that for θ = (µ, α, β, p) ∈ Θ and θ′ = (µ′, α′, β′, p′) ∈ Θ:

fθ = fθ′ ⇐⇒



µ′ = µ(1−α′)
κ(1−α)

α(2−α)
(1−α)2 = κα′(2−α′)

(1−α′)2

β′ = β 1−α
1−α′

p′ = κp

. (6.17)

• If µ = µ′, the system of Equations (6.17) reduces to:

κ = (1−α′)
(1−α)

κα′(2−α′)
(1−α′)2 = α(2−α)

(1−α)2

β′ = β
κ

p′ = κp

⇐⇒



κ = (1−α′)
(1−α)

α′(2−α′)
(1−α′) = α(2−α)

(1−α)

β′ = β
κ

p′ = κp

.

As α ∈ (0, 1) and α′ ∈ (0, 1), the second equation implies that α = α′ and so κ = 1 and
β′ = β.

• If α = α′, the second equation in (6.17) implies directly that κ = 1 and so all other
equalities follow.

• If β = β′, the third equation in (6.17) implies that α = α′ and by the previous point all
other equalities hold.
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• If p = p′, κ = 1 and the rest of equalities are verified.

This shows that whenever one of the parameters is fixed, fθ = fθ′ implies θ = θ′. This
achieves the proof.
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Discussion

The Hawkes process model is used accross a vast multitude of application fields, and so establish-
ing inference procedures to model more complex phenomena is undeniably important. Our work
provided novel statistical tools for the estimation of Hawkes processes within the frequentist para-
metric framework. Our effort was centered around establishing methodological procedures for
two different submodels, with code implementations of our estimators and numerical illustrations
of their efficiency.

The first part of our work focused on the study of inhibiting interactions for Hawkes processes
by establishing the maximum likelihood estimation procedure. In Chapter 3, we implemented this
method under the assumption of monotony of the kernel function, which allowed us to derive
a closed-form expression of the log-likelihood. In Chapter 4, we extended our previous work
to the multivariate setting for exponentially-shaped interactions which revealed the challenges
of establishing the identifiability of our model. This issue arised primarily from our use of
the positive part function in the non-linear Hawkes process model as, by taking null values, it
hinders the accurate identification of interaction parameters. On the other hand, the choice
of this function helps modelling a closer behaviour to the classical linear Hawkes model and
simplifies the computation of the intensity function. Prioritising positive non-linear functions is
a way to circumvent this problem, as shown in the Bayesian context in Sulem et al. (2024), for
a shifted version of the positive part function. By adapting our procedure to an approximation
of the positive part function, for example through the softplus function, the resulting method
could be a satisfying compromise between model fidelity and theoretical guarantees.

Numerically, we illustrated the improvements in our estimations by incorporating a support
inference step for the interaction matrix, as evidenced by our goodness-of-fit hypothesis testing.
Our methods relied on data-based paradigms which are highly dependant on sample size. In
practical applications, such as medical data analysis with limited observations, it is important
to propose more robust methods. Future research could explore Lasso penalisation procedures,
in the same vein as the work of Bacry et al. (2020), where both an ℓ1 and trace-norm penalisa-
tions are tuned by the means of data-driven weights and that can benefit from cross-validation
procedures. We believe this is a promising research field with novel contributions as shown in
the work of Lotz (2024) on sparsity tests for Hawkes processes.

In our application to the study of neuronal activity, the results exhibited a clear self-interaction
behaviour for each studied neuron. This is consistent with the known behaviour of neurons as
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they present a post-activation refractory period, reflecting an incapacity to reactivate after a
synaptic impulse is produced. The fact that our estimations are not consistently self-inhibitory
is most likely due to the choice of a monotone kernel in the form of the exponential function.
In reality, when membrane potential is measured, the refractory effect is delayed which is better
represented by a non-monotone function suggesting that extending our work for more complex
interaction functions is a clear path to obtaining more faithful models.

The second part of our work examined noisy observations of linear Hawkes processes. In
Chapter 5, we modelled the presence of exogeneous points by superposing a homogeneous Pois-
son process to the Hawkes process. Chapter 6 adresses the absence of points through a thinning
representation of the original point process. Our spectral approach, utilising the Bartlett spec-
trum and the periodogram, enabled us to establish an estimation procedure by optimising a
spectral version of the log-likelihood. The main difficulty encountered was about identifiabil-
ity of the statistical models, which derived directly from the definition of the spectral density
function. To partially solve this problem, we provided conditions on the kernel functions that
allowed us to recover identifiability of our model. Our method will greatly benefit from more
general results, particularly for higher dimensional processes with more complex interactions.
Another possible solution could be found in the recent works by Roueff et al. (2016) and Roueff
et al. (2019), that establish an equivalent expression of the Bartlett spectrum by relaxing the
stationarity condition to a local stationarity. This could help to incorporate more general shapes
of noise which in turn could help to better identify the noise dynamics.

Our numerical illustrations on synthetic data showed the efficiency of our approach to perform
this difficult estimation task and the next step is to apply our results to real-world data. This
can help to provide a better insight in contexts where measurement errors are more likely to
appear. In particular, it can be interesting to combine both models studied in Chapters 5 and
6in order to study the spread of illnesses through screening. In this context, the presence of false
positives and false negatives can be modelled by the superposition and thinning operations and
so our model can clearly help to obtain better interpretations of disease transmission dynamics.

Finally, in the context of subsampling through thinning, a significant issue concerns the
lack of evaluation methods for spectral estimators in unsupervised settings. As suggested in
the recent works by Cronie et al. (2024) and Coeurjolly et al. (2024), subsampling paradigms
can greatly improve the estimation procedures and allow for more complex methods as cross-
validation paradigms to be available for the study of point processes. Establishing asymptotic
results for our estimators could partially address this issue by providing a way of establishing
asymptotic confidence intervals. Encouragingly, there has been recent advances concerning these
guarantees for the periodogram in the works by Rajala et al. (2023) and Yang et al. (2024),
which pave the way for the study of the periodogram.
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Inference of non-linear or imperfectly observed Hawkes processes
Abstract

The Hawkes point process is a popular statistical tool to analyse temporal patterns. Modern applications
propose extensions of this model to account for specificities in each field of study, which in turn complex-
ifies the task of inference. In this thesis, we advance different approaches for the parametric estimation of
two submodels of the Hawkes process in univariate and multivariate settings. Motivated by the modelling
of complex neuronal interactions observed from spike train data, our first study focuses on accounting
for both inhibition and excitation effects between neurons, modelled by the non-linear Hawkes process.
We derive a closed-form expression of the log-likelihood in order to implement a maximum likelihood
procedure. As a consequence of our approach, we gain access to a goodness-of-fit scheme allowing us
to establish ad hoc model selection methods to estimate the interaction network in the multivariate
setting. The second part of this thesis focuses on studying Hawkes process data noised by two different
alterations: adding or removing points. The absence of knowledge on the noise dynamics makes classical
inference procedures intractable or computationally expensive. Our solution is to leverage the spectral
analysis of point processes to establish an estimator obtained by maximising the spectral log-likelihood.
By deriving the spectral densities of the noised processes and by establishing identifiability conditions
on our model, we show that the spectral inference method does not necessitate any information on the
structure of the noise, effectively circumventing this issue. An additional result of the study of Hawkes
processes with missing points is that it gives access to a subsampling paradigm to enhance the estima-
tion methods by introducing a penalisation parameter. We illustrate the efficiency of all of our methods
through reproducible numerical implementations.

Keywords: hawkes processes, parametric inference, identifiability, inhibition, spectral theory, neuronal
data

Résumé

Le processus ponctuel de Hawkes est un outil statistique très répandu pour analyser des dynamiques
temporelles. Les applications modernes des processus de Hawkes proposent des extensions du modèle
initial pour prendre en compte certaines caractéristiques spécifiques à chaque domaine d’étude, ce qui
complexifie les tâches d’inférence. Dans cette thèse, nous proposons différentes contributions à l’esti-
mation paramétrique de deux variantes du processus de Hawkes dans les cadres univarié et multivarié.
Motivée par la modélisation d’interactions complexes au sein d’une population de neurones, notre pre-
mière étude porte sur la prise en compte conjointe d’effets excitateurs et inhibiteurs entre les signaux
émis par les neurones au cours du temps, modélisés par un processus de Hawkes non-linéaire. Dans ce
modèle, nous obtenons une expression explicite de la log-vraisemblance qui nous permet d’implémenter
une procédure de maximum de vraisemblance. Nous établissons également une méthode de sélection
de modèle qui fournit notamment une estimation du réseau d’interactions dans le cadre multivarié. La
deuxième partie de cette thèse est consacrée à l’étude des processus de Hawkes bruités par deux types
d’altérations : l’ajout ou la suppression de certains points. Le manque d’information lié à ces mécanismes
de bruit rend les méthodes classiques d’inférence non-applicables ou numériquement coûteuses. Notre
solution consiste à s’appuyer sur l’analyse spectrale des processus ponctuels afin d’établir un estimateur
obtenu en maximisant la log-vraisemblance spectrale. Nous obtenons l’expression des densités spectrales
des processus bruités et, après avoir établi des conditions d’identifiabilité pour nos différents modèles,
nous montrons que cette méthode d’inférence ne nécessite pas de connaître la structure du bruit, contour-
nant ainsi le problème d’estimation. Notre étude sur les processus bruités donne accès à une méthode
de sous-échantillonnage qui nous permet d’améliorer les approches d’estimation en introduisant un pa-
ramètre de pénalisation. Nous illustrons la performance des différentes méthodes proposées à travers des
implémentations numériques reproductibles.

Mots clés : processsus de hawkes, inférence paramétrique, identifiabilité, inhibition, théorie spectrale,
données neuronales
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